Chugach Terrane, Alaska

This project focuses on the tectonic evolution of the Chugach-Prince William terrane in Southeast Alaska, and it is a continuation of our 2011, and 2012 projects. This thick accretionary complex is dominated by Campanian-Paleocene (c. 75-55 Ma) trench fill turbidites likely derived from a volcano-plutonic complex. Near-trench plutons of the Sanak-Baranof belt imprinted a distinctive thermal event on these rocks and are a key indicator of plate position between 61-50 Ma. The primary study area for 2013 is the Sitka Graywacke in Sitka, Alaska, and the nearby and presumed metamorphosed equivalent, Baranof Schist in Whale Bay in the South Baranof Wilderness Area. Student projects will be focused on metamorphism and thermal evolution of these rocks, and sedimentary provenance including U/Pb dating of detrital zircon.

New Mexico

In this project, we will collect specimens so that field relations can be considered as part of the magnetic/geochemical provenance problem. There is also a more general archaeological/anthropological perspective involving sourcing theory, technological choices, and economic models for the students to balance the strictly geological aspects of this project.

Snake Range, Nevada

This project will be a field-based study of the structural, tectonic, metamorphic and thermal history of the spectacular northern Snake Range in eastern Nevada. The Snake Range is a classic example of a metamorphic core complex where mid-crustal metamorphic rocks have been penetratively deformed and exhumed by tectonic extension along a major low-angle normal fault and shear zone.

Colorado Front Range, Year 5

The Keck Colorado 12 project will work with a large interdisciplinary study (Boulder Creek Critical Zone Observatory: Weathered profile development in a rocky environment and its influence on watershed hydrology and biogeochemistry-NSF 0724960) directed by Suzanne Anderson, Institute for Arctic and Alpine Studies (INSTAAR), University of Colorado.

Western Ireland

The 2012 Lough Carra, Ireland project will investigate Holocene climate, aquatic productivity, and pollution records by collecting and analyzing lacustrine carbonate sediments. In addition, we will verify the fidelity of the marl delta 13C record by conducting a series of pore water incubation experiments. The summer program will consist of fieldwork in Ireland and laboratory analyses at Amherst College and Wesleyan University.