Costa Rica 2013

Students will investigate the morphotectonic footprint of earthquake-generated uplift on the Nicoya Peninsula, Costa Rica. This project will expand upon preliminary geomorphic, geodetic, and seismologic data showing patterns of coseismic rupture and coastal uplift generated by the recent Mw7.6 Nicoya Earthquake of 5 September 2012. Project students will build upon several decades of prior research on subduction generated coastal uplift on the Nicoya Peninsula [e.g., Hare and Gardner, 1985; Marshall and Anderson, 1995; Marshall et al., 2001-2012], including a highly successful 1998 Keck project [Gardner et al., 2001]. The participating students will conduct fieldwork along the Nicoya Peninsula coastline, learning research techniques of tectonic geomorphology, paleoseismology, and GPS geodesy.

Martian Pāhoehoe Lava

This is a comparative study of inflated and disrupted pāhoehoe lava on Mars and the Earth. The project will involve fieldwork in the Zuni-Bandera Volcanic Field of New Mexico and mapping of potentially analogous lava flows within the Elysium region of Mars.

Massasauga Provincial Park, Ontario, Canada

Investigation of spatiotemporal changes in island shorelines due to water-level changes using the mapping and analytical tools of a geographic information system (GIS). Study area is The Massasauga Provincial Park archipelago (Georgian Bay, Lake Huron, Ontario).

Deep Springs Lake, California

This Keck project is an interdisciplinary investigation of biologically mediated precipitation of dolomite and other carbonate minerals in Deep Springs Lake, CA. Elucidating the mechanisms of modern dolomite precipitation is a fundamental and longstanding problem in sedimentology and Earth history. Students and faculty will develop an integrated suite of field and laboratory data utilizing techniques in microbiology, aqueous geochemistry, sedimentology, mineralogy, and isotope geochemistry. During the project, participants will have the opportunity to perform cutting-edge geobiological research, including one week of fieldwork in a modern alkaline playa lake and three weeks of lab research at the sponsoring institutions.

Connecticut

The 2013 project will investigate the impact of Tropical Storm Irene on sediment transport in the Deerfield River Basin. This record-breaking storm dumped 180-250 mm of rain within a 24-hour period causing extensive flooding throughout the watershed. Numerous mass wasting events helped contribute to an anomalously high sediment load.