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MONAZITE OCCURRENCE IN GARNET BEARING SCHIST AND 

GNEISS FROM THE RUBY RANGE, SOUTHWEST MONTANA

AMAR MUKUNDA, Amherst College

Research Advisor: Tekla Harms 

INTRODUCTION

The ages of monazite compositional zones are 

established relative to garnet growth and consumption, 

melt related reactions, and fabric formation in 

a migmatitic schist from the Christensen Ranch 

Metamorphic suite (AM-9a) and a garnet bearing 

mylonitic leucogneiss from the Dillon Gneiss suite 

(AM-1b) in the Ruby Range of southwest Montana 

(Fig 1). Correlations are established based on well-

known controls on compositional zoning and grain 

shape in monazite. For a particular bulk composition, 

monazite that grows in the presence of garnet is 

relatively depleted in yttrium compared to monazite 

that grows in the absence of garnet (Zhu and O’Nions, 

1999). The zoning of thorium and uranium in monazite 

is typically controlled by melt producing reactions; 

monazite that grows in the presence of melt has an 

elevated Th/U ratio relative to monazite produced 

before melting and to monazite produced after melt 

has left the chemical system (Bea & Monterro, 1999). 

Euhedral monazite grains typically have a “football” 

shaped habit. Grains that are elongate may have either: 

1) been deformed (pre-kinematic grains), 2) grown 

during deformation (syn-kinematic grains), or 3) 

grown constrained by surrounding minerals defining 
a fabric (late syn-kinematic to post-kinematic grains) 

(Williams et al., 2007).

METHODS

Rock samples were collected during the summer 

of 2014. At each location care was taken to collect 

un-weathered rock and to collect samples containing 

the greatest number of phases. Petrographic 

observations were made at the outcrop, using slabs, 

Figure 1. Map of sample locations. Geologic map is of area 
surrounding Stone Creek Road in the northern Ruby Range. 
Adapted from James (1990). 
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on a petrographic microscope, using 400 dpi scans 

of thin sections, using billets stained by sodium 

cobaltinitrate to distinguish feldspars, and using 

the full thin section mapping feature of the Aztec 

software suite connected to the scanning electron 

microscope with a backscatter electron detector at 

Amherst College. Once general petrography had been 

conducted, thin sections of each sample were taken to 

the Ultrachron Lab at the University of Massachusetts, 

Amherst, where they were carbon coated, full thin 

section electron microprobe (Cameca SX50) maps 

were made (30 micron pixels, 25 milliseconds dwell 

per pixel) and individual EMPA monazite grain maps 

were made (0.5 micron pixels, 80-100 milliseconds 

dwell per pixel). For both types of mapping the charge 

difference between the cathode and anode was 15kv. 

The intensity of the current hitting the sample was 300 

nanoamps for full section mapping and 200 nanoamps 

for grain mapping. 

CHRISTENSEN RANCH MIGMATITIC SCHIST

Results

The study sample was collected from a migmatitic 

schist in the Christensen Ranch Metamorphic suite, 

whose mineral assemblage is consistent with a pelitic 

protolith: 34% quartz, 24% feldspar (plagioclase with 

very limited alkali feldspar), 18% biotite, 10% garnet, 

4% sillimanite, considerable tourmaline and apatite, 

as well as trace rutile, ilmenite, retrograde chlorite and 

muscovite, zircon, monazite, and extremely limited 

xenotime. The schist has three end-member domains. 

Most of the rock is made up of a matrix of quartz, 

feldspar, fine-grained biotite, and tourmaline. Layers 
of leucosome made up of quartz and sillimanite 

are up to 1 cm thick and 20 cm long and make up 

approximately 20% of the rock volume. Layers 

of coarse biotite, and limited feldspar, quartz, and 

sillimanite make up less than 10% of the rock volume. 

Garnet cores are inclusion rich and garnet rims 

have limited inclusions. Garnet core inclusions are 

dominantly quartz, plagioclase, and opaques and 

in one case sillimanite. Garnet rim inclusions are 

ilmenite and opaques. Garnet core inclusions are finer 
grained than the matrix and are oriented differently 

from rim inclusions, both of which are typically 

oriented differently from the fabric in the surrounding 

matrix. Garnets are fractured in a consistent direction 

that is parallel to the inclusion trails of some garnet 

cores. 

The overwhelming majority of monazite grains occur 

in the matrix in one of the two types of biotite bearing 

layers (Fig. 2). Some grains occur as inclusions in 

garnet, but very few occur within the leucosome. 

In the study sample, 15 grains included in garnet 

cores, garnet rims, sillimanite, biotite, quartz, and 

plagioclase were mapped (Fig 2). Grains mapped are 

in biotite bearing layers as well as in the leucosome. 

The uranium maps of grains m9 and m15 are difficult 
to interpret because those grains are included in 

biotite, whose potassium peak interferes with the 

uranium peak. The yttrium map of one euhedral grain 

(m8) preserves four discrete zones of differing Y 

concentration (Fig. 3). From core to rim, these zones 

are low Y (henceforth Y1), high Y (Y2), medium Y 

(Y3), and a partial very high Y rim (Y4). Two grains 

(m7, m8) preserve from core to rim, low Y, high Y, and 

medium Y zones. Two other grains preserve partial 

very high Y rims. The remaining grains preserve either 

two or no discrete Y compositional zones. 

Discussion

The most parsimonious explanation of Y zoning is that 

many grains (m1, m5, m7, m8, m9, m11, m13, and 

m15) preserve the same four yttrium domains in order: 

low (Y1), high (Y2), medium (Y3), ultra-high (Y4) 

(Fig. 2, Fig. 3). It is possible that some correlations 

across domains are incorrect and that there are actually 

more than 4 domains preserved in these grains, but 

there is no basis on which to distinguish greater 

than four domains given the available information. 

Obtaining spot ages within observed Y domains 

can test, within instrument precision, all Y domain 

correspondences. 

This Y zoning in monazites implies two episodes of 

garnet growth and breakdown. Garnet growth occurred 

before or during the growth of the low Y domain (Y1); 

garnet consumption occurred during the growth of the 

high Y domain (Y2); garnet growth occurred before 

or during the growth of the medium Y domain (Y3); 

garnet consumption occurred during the growth of the 

very high Y domain (Y4) (Fig 4). 
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Figure 2. Christensen Ranch migmatitic metapelite (AM-9a). Mg thin section map and monazite grain maps. Color scale applies to 
all element maps. In Mg map, orange = biotite, purple = garnet. Red dots are locations of 86 brightest Ce hotspots. Grain maps are 
arranged right to left, top to bottom: Y, Th, U. Mineral in which grain is included is listed after the grain name (m#). Orientation of 
the thin section is the same as the orientation of the grains.
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Figure 3. Table of Y domain correspondences (AM-9a). 



28th Annual Symposium Volume, 25th April, 2015 

5

The inclusion of one grain (m13) in garnet informs the 

relative ages of Y domains and garnet zones. Grain 

m13 grew during one episode of garnet breakdown 

and the start of a second episode of garnet growth 

(Y2 and Y3). Because m13 is included near the outer 

edge of the plagioclase-quartz inclusion rich core of a 

garnet, the first episode of garnet breakdown preceded 
the formation of the core-rim boundary.

The Y zoning of two other grains (m6 and m11) can 

be relatively easily integrated with the four established 

Y domains. The two grains have a low Y domain 

partially surrounded by an outer medium Y domain. 

These may be correlated with Y1 and Y3. Since Y2 

is a small domain in the grains that preserve it, it is 

possible that the two grains simply did not grow under 

Y2 conditions. 

Many grains (m2, m3, m4, m10, and m14) do not have 

any yttrium zoning. One grain (m14) that occurs as 

a near-rim inclusion in garnet is entirely low Y. The 

other Y-homogenous grains are entirely medium Y, are 

all smaller than 40 microns in the longest direction, 

and are included in matrix minerals. It is likely that 

these grains only preserve domain Y3, and it is 

unlikely that they were homogenized during ongoing 

metamorphism (Cherniak et al., 2000; Gardes et al., 

2006).

Thorium zoning in monazite can be useful in 

establishing the timing of melt production, 

crystallization, and loss. In some grains (m6, m7, and 

m14) thorium zoning is similar to Y zoning, such that 

Y1 is a high thorium domain. This suggests that Y1 

grew in the presence of both garnet and melt. Yet in 

Figure 4. Interpretation of correlations between monazite growth domains and fabric formation in the Christensen Ranch 
Metamorphic suite migmatitic schist (AM-9a). Question marks indicate that it is unknown if the specified reaction extends into 
adjacent time period. 
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other grains (m8, m9, and m11) Y1 is not particularly 

high thorium. This difference can be explained by 

the distance of monazite grains from leucosome: Y1 

grew at a time when melt was present, but only grains 

near the leucosome extracted thorium from the melt. 

In a few grains, (m5, m11, and m13) part of Y3 is 

high Thorium. Melt may have been present during the 

growth of Y3 as well. 

In many grains, (m1, m5, m6, m7, m8, m13, and m14) 

some of the rim has elevated uranium content. In all 

but one (m14) this high U rim occurs within the Y3 

zone of the grain. In m14, the high U rim is part of Y1. 

Timing the growth of sillimanite found in leucosome 

layers can be constrained by inclusion relationships. 

The inclusion of a monazite grain with Y3 (m7) in a 

leucosome sillimanite implies that some leucosome 

sillimanite continued to grow after Y3 monazite 

growth had begun. The inclusion of a leucosome 

sillimanite in Y3 (m8) means that some leucosome 

sillimanite grew before Y3 had begun to form. These 

two constrains imply that leucosome sillimanite 

formed at least partly during Y3. This in turn suggests 

that either melting or melt precipitation occurred 

during Y3. Textural observations provide no timing 

constraints on the growth of sillimanite found outside 

of the leucosome. 

DILLON GNEISS MYLONITIC GARNET  

LEUCOGNEISS

Results

The study sample was collected from a mylonitic 

garnet leucogneiss with foliated and lineated 

quartz ribbons (Fig 5.). The rock has no distinct 

compositional bands. The rock is made up of 64% 

alkali feldspar, 28% quartz, 5% garnet, 2% An33 

plagioclase, and also includes trace muscovite. Alkali 

feldspar occurs as matrix grains and as augen; matrix 

grains occur as both microcline and perthite but augen 

occur exclusively as perthite. This assemblage is 

consistent with an alkali feldspar granite protolith. 

Quartz occurs in ribbons that range from 0.2 to 1 mm 

high (typically 1 grain) and from 2 mm up to 12 cm 

long (many grains) (Fig. 5). There are neither undulose 

extinction nor subgrains in at least 90% of quartz 

ribbons. The orientations of subgrains and undulose 

extinction where present are not systematic.

In the thin section of sample AM-1b, there is a single 

large grain (400 micron diameter) of monazite and 

about a dozen smaller grains (up to 20 microns in 

diameter) of monazite. Of the dozen smaller grains 

several are partially altered to allanite and therefore 

cannot be dated. Three of the small grains and the 

single large grain were mapped. Figure 5 shows the 

Y and Th grain maps of one of the small grains, grain 

1b-m3, which is elongate in the same direction as the 

fabric defined by quartz ribbons and is included in a 
grain of alkali feldspar (Fig. 5).

Figure 5. Dillon Gneiss mylonitic garnet leucogneiss (AM 1B). 
Cross-polarized thin section scan and monazite grain maps. Red 
dot shows location of grain. Left map is yttrium, right map is 
thorium. 
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Discussion

Grain 1b-m3 likely grew during deformation. 

Prekinematic growth and synkinematic deformation 

of the grain is unlikely because the rock appears to 

have deformed predominantly through the dynamic 

recrystallization of quartz into ribbons. Further, post-

kinematic elongate monazite is typically a feature of 

rocks where monazite grows surrounded by foliated 

minerals (Williams et al., 2007). Grains of alkali 

feldspar in no particular orientation surround 1b-m3. 

An age obtained on this grain would therefore refer 

to a time at which deformation was occurring in the 

mylonitic garnet leucogneiss. 
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