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CALCITE-GRAPHITE STABLE ISOTOPE THERMOMETRY  

IN MARBLES OF THE RUBY RANGE,  

SW MONTANA

REBECCA BLAND, Mount Holyoke College

Research Advisor: Steven R. Dunn

INTRODUCTION

Today, the Ruby Range of southwest Montana 

provides exposure to rocks that are the result of a 

1.8-1.7 Ga Proterozoic orogeny, the Big Sky orogeny 

(Brady et al. 2004). The Precambrian lithologies 

of this range include amphibolite, pelite, marble, 

banded iron formation, and other metaigneous and 

metasedimentary rocks. The rocks experienced 

metamorphic events both at 2.45 Ga and 1.8 Ga 

(Harms et al., 2015). This study focuses on marbles 

from the western portion of the Ruby Range in the 

Christensen Ranch and Dillon groups (James, 1990) 

in order to understand the history of this belt of 

rocks and the temperatures of their metamorphism 

and deformation. This study applies the calcite-

graphite carbon isotope thermometer in order to 

determine metamorphic temperatures and uses 

mineral assemblages to constrain metamorphic fluid 
composition in selected samples. 

UNIT DESCRIPTION

The marble of the metasedimentary Christensen Ranch 

suite of the Ruby Range exists in layers up to half a 

kilometer in thickness, with outcrops exposures <10 

m wide (James, 1990). Individual outcrop are often 

bounded by pelite in the Christensen Ranch group, 

and a mylonitic garnet leucogneiss, or characteristic 

quartzofeldspathic gneiss in the Dillon group (Fig. 1). 

The marbles from these outcrops are fine to medium 
grained and sugary in texture. Coarser grained marbles 

are generally more pure calcite, with grains ~1 cm 

in diameter. These coarser grained marbles are also 

very weathered and crumbly with a brown crust. 

Marbles appear both with layering and more massive 

and granular (Fig. 2). Where layering is present, it 

distinguishes as bands richer in silicates or graphite. 

Across the Christensen Ranch group, marbles are less 

commonly a pure calcite marble, but range to a mix 

of calcite and dolomite, to pure dolomitic marble. In 

addition to calcite and dolomite, diopside is common, 

with grains subhedral, ranging from 1-3 mm in size 

and composing up to ~15% of the rock. Graphite in 

these rocks is distinct, although not common. Flakes 

are generally up to 1 mm in diameter, and where 

present compose 1-3% of the rock. Other common 

minerals include K-feldspar, hornblende and biotite 

with local plagioclase, quartz, clinozoisite (or epidote), 

scapolite and garnet (no sample contains all of these 

Figure 1. The location of the Ruby Range in southwest Montana 
with an inset showing the study area within the Ruby Range. 
Sample locations and the calculated temperatures from those 
locations are shown within the Christensen Ranch Group and 
the Dillon Gneiss. Areas in light blue are mapped marble units, 
light pink is an undifferentiated unit, and the green to grey color 
represents characteristic Dillon quartzofeldspathic gneiss. 
Figures modified from Harms et al. (2015, this volume) and 
James (1990).
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phases). Accessory titanite and sulfides are common. 
Evidence for hydrothermal alteration exists in the 

form of talc and serpentine, talc appears in marbles 

located near talc mines in the field area, mostly in 
small blebs, ~5 mm in diameter, and is a greenish 

white color. Several marble exposures contain rounded 

grains of serpentine, presumably pseudomorphs after 

olivine (Fig. 2c). Complete mineralogy is presented in 

Table 1.

CALCITE-GRAPHITE THERMOMETRY

The temperature dependent fractionation of carbon 

isotopes in calcite and graphite provides a reliable 

isotopic geothermometer (referred to as cal-gr). 

Because of the extraordinarily limited diffusion 

rates of carbon in graphite, this geothermometer is 

particularly good at retaining peak metamorphic 

temperatures (Dunn and Valley, 1992). Resetting 

of the isotopic fractionations most likely requires 

complete recrystallization of the graphite (Dunn and 

Valley, 1992). Calcite will exchange carbon much 

more readily at metamorphic temperatures, however, 

generally there are no additional carbon-bearing 

minerals for the calcite to exchange with, so the cal-gr 

system is relatively free of retrograde modification. 
The refractory nature of graphite makes experimental 

study of graphite and calcite carbon exchange difficult, 
nevertheless two empirically-calibrated versions of 

the cal-gr geothermometer have been widely applied: 

Dunn and Valley (1992) and Kitchen and Valley 

(1995). Dunn (2005) shows that Dunn and Valley 

(1992) is very accurate for the temperature range of 

525˚C-650˚C, but above 650˚C the Kitchen and Valley 

Table 1. Mineralogy of marble (M) and calc-silicate (CS) samples from the Christensen Ranch group (CR) and Dillon gneiss (DG). 
Cal = calcite; Gr = graphite; Dol = dolomite; Di = diopside; Am = amphibole; Kfs = potassium feldspar; Pl = plagioclase feldspar; 
Ep = epidote; Qtz = quartz; Ttn = titanite; Bt = biotite; Srp = serpentine (usually secondary); Tlc = talc; Phl = phlogopite; Scp = 
scapolite; Ap = apatite; Chl = chlorite; Grt = garnet.

Figure 2. A. Typical exopsure of marble unit. B and C: 
Representative textures of marbles from within the Christensen 
Ranch Group. 14RB-02C is shown in B depicting the layered 
fabric that occurs in some samples. The bands in 14RB-02C are 
formed with greater graphite density. C shows sample 14RB-16A 
with a more granular texture made visible by the abundance of 
serpentine throughout the sample. D and E: Photomicrograph of 
sample 14RB-07A in plane light and crossed polars, respectively. 
F: Backscattered image of same area as D and E.
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(1995) calibration is preferable and was the one used 

throughout this study.

METHODS

In the field, sampling occurred across the Christensen 
Ranch group as well as more limitedly within the 

Dillon. Attempts were made to collect samples from 

all stratigraphic levels within the Christensen Ranch, 

specifically along the contact with the Dillon gneiss. 
While sampling, care was taken to avoid dolomite. 

Samples are of both calcite marble with graphite 

inclusions that are otherwise as pure as possible, and 

calc-silicate rocks that include graphite.

Graphite for stable isotope analysis was gathered 

largely using a flotation technique, wherein ~3 cm3 

of sample was crushed and powdered, and stirred 

in a beaker of water. The floating minerals were 
scooped out, rinsed with HCl and purified water, and 
dried. When this method failed to produce sufficient 
graphite, ~2 cm3 of sample was dissolved in 200 ml 

strong HCl, rinsed, and dried. From this dissolution 

residue, flakes of graphite were then hand picked from 
the resulting rock sand. The collected graphite was 

then combined with excess CuO, placed in a pre-fired 
quartz tube, evacuated, sealed, and heated overnight at 

950˚C. CO
2
 was collected from these samples in 6 mm 

pyrex tubes after using standard cryogenic techniques 

to remove any H
2
O or SO

2
 (Dunn, 2005) and these 

were taken to the University of Massachusetts – 

Amherst for mass spectrometer analysis. Additionally, 

a small (~2 cm3) piece of each of the analyzed samples 

was dissolved separately in strong HCl in order to 

assess whether the graphite flakes in each sample were 
armored by silica, given that silica armoring results 

in isotopically lighter grains of graphite (Wada, 1988; 

Dunn and Valley, 1992).

Stable isotope analysis of carbonate was performed 

on crushed and ground whole-rock powder of the 

same samples as the graphite separates. Calcite 

powder was analyzed with an automated carbonate 

preparation system connected to a Finnegan Delta XL 

mass spectrometer at the University of Massachusetts 

– Amherst. The results of these carbon and oxygen 

analyses are presented in Table 2 using standard delta 

notation, and are presented compared to the Vienna 

Standard Mean Ocean Water (VSMOW) and Vienna 

Pee Dee Belemnite (VPDB) standards for oxygen 

and carbon, respectively. The precision for these 

analyses is 0.1‰ for both calcite and graphite based 

on repeated measurements of standards as well as 

graphite duplicates.

Calcite-graphite temperatures were obtained following 

Kitchen and Valley (1995): ∆13C
cal-gr

 = 3.56 x 106 x 

T-2(K)

Petrographic analysis was conducted on standard thin 

sections cut from 23 samples across the Christensen 

Ranch and Dillon Gneiss suite. These thin sections 

were stained with alizarin for ease in distinguishing 

between calcite and dolomite. Six of these samples, 

14RB-01A, 14RB-02C, 14RB-05, 14RB-07A, 14RB-

07C, and 14RB-24A were polished and carbon coated 

for EDS analysis, which was carried out at Mount 

Holyoke College using an FEI Quanta 50 scanning 

electron microscope to confirm mineral assemblages 
and textures. 

Because samples14RB-02C and 14RB-16A contain 
sufficient amounts of dolomite it is necessary to 
correct their δ13C values so as to more accurately 

represent the calcite. The fractionation of carbon 

isotopes between calcite and dolomite is 0.4‰ in the 

range of 600˚-700˚C, with dolomite having a heavier 
isotopic weight than calcite (Friedman and O’Neil, 

1977). At most a correction of 0.15 is thus needed 

for visual estimates of 20% dolomite and 55% calcite 

in sample 14RB-16A. A correction of 0.04 is used 
for visual estimates of 8% dolomite and 70% calcite 

in sample 14RB-02C. These corrections raised the 

temperature by 20˚C and 5˚C respectively (Friedman 
and O’Neil, 1977).

Sample # δ13
Cgr δ13

Ccal δ18
O-SMOW Dcal-gr Temp (˚C) 

14RB-01A -5.86 -2.18 13.75 3.67 712 

 -5.84     

14RB-01B -5.81 -2.13 16.12 3.65 714 

 -5.75     

14RB-02C -6.76 -3.17 15.76 3.59 722 

 -6.85     

14RB-07A -9.27 -5.82 14.27 3.50 735 

 -9.39     

14RB-16A -5.09 -1.27 14.15 3.57 726 

 -4.89     

14RB-20B -5.32 -1.65 11.75 3.67 711 

 

Table 2. Data and resulting temperatures calculated using 
the Kitchen and Valley (1995) calibrations. Stable isotope 
compositions in ‰ of calcite and graphite. δ13C

gr
 values 

are highly reproducible, and duplicates of each sample were 
run except for 14RB-20B given a lack of sufficient graphite. 
Temperatures range from 711˚C to 735˚C. 
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RESULTS

Results from cal-gr thermometry are presented in 

Table 2. Calculated temperatures range from 711˚C 
to 735˚C, with an average temperature of 720˚C. 
Carbon values are generally within the normal range 

for marine limestone (-2 to +4‰). Oxygen values are 

predominantly lighter than those of typical marine 

limestones (22 to 32‰) (Keith and Weber, 1964; 
Hoefs, 2009).

Uncertainty in the calculated temperature can result 

from both analytical uncertainty and from possible 

error in the calibration. Assessing any possible error 

in the calibration is beyond this study because I have 

no independent quantitative thermometry. Analytical 

uncertainty in the δ13C values is about ± 0.1‰ in both 

calcite and graphite. A 0.2‰ uncertainty in the ∆cal-gr 
value [δ13C

(cal)
 – δ13C

(gr)
] would result in temperature 

uncertainty of 53˚C, which would be a minimum 
uncertainty.

DISCUSSION

The carbon isotope values are more-or-less within a 

normal range except for sample 14RB-07A, which 

is quite light. With respect to oxygen, all are lighter 

than normal marine limestone. These lower isotopic 

compositions could be partly attributed to the loss 

of isotopically heavier CO
2
 during metamorphic 

reactions, but exchange with isotopically light, 

externally-derived fluids is probably necessary to 
explain the marble δ18O values (Bowman et al., 1994). 

Mineral assemblages in some of the samples allow 

the fluid composition to be constrained. This is done 
with the use of T-X(CO

2
) diagrams. The endmember 

positions of selected mineral reactions were 

determined for the chemical system CaO-MgO-Al
2
O

3
-

SiO
2
-CO

2
-H

2
O. A T-X(CO

2
) diagram was created 

using the PTX program (GEØ-CALC) and database 

of Berman (1988) (Fig. 3). In order to accurately 

calculate the locations of mineral reactions within 

T-X space, one must specify the pressure of the T-X 

diagram. Clémentine Hamelin (2015, this volume) 

estimates the metamorphic pressure to be about 8 kbar 

(800 MPa) based on mineral assemblages within the 

KFMASH system for pelites within the Christensen 

Ranch group. Thus this study used 8 kbar for the T-X 

diagram.

Solid solutions in some of the minerals leads to 

changes in the mineral reaction positions in T-X 

space. To account for this, mineral compositions were 

determined on the SEM (Fig. 3). The “activity” of 

the endmember in the solid solutions was calculated 

assuming ideal solutions and mixing on cation sites. 

GEØ-CALC allows mineral activities to be used 

for the placement of reactions. Sample 14RB-07A, 

having the most restrictive mineral assemblage 

therefore provides the most well-constrained estimate 

of T-X(CO
2
). The presence of anorthite, clinozoisite, 

garnet, and calcite in 14RB-07A allow us to constrain 

the fluid composition on the diagram. Incorporating 
the temperature range of 720±10˚C, we find that over 
the course of metamorphism, these rocks came into 

interaction with fluids that were highly water rich, 
with ≤5% CO

2
. The presence of garnet and epidote/

clinozoisite in various samples from across the field 
area support this assertion and provide evidence for 

water rich fluid infiltration throughout the marbles of 
the Christensen Ranch suite. 

Figure 3. T-X(CO2) diagram for selected reactions given 
mineral assemblages in sample 14RB-07A adjusted for solid 
solution as follows: α(Gr) = 0.09, α(An) = 0.75, α(Tr) = 0.06, α(Czo) 
= 0.64 and α(Di) = 0.50. The presence of garnet, anorthite, 
clinozoisite, and calcite constrain reactions to the portion of the 
diagram highlighted in red. Cal-gr geothermometry indicates 
peak temperatures at ~720˚C, requiring very H2O-rich fluid 
conditions.
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Because the mineral reactions assumed to have 

taken place produce CO
2
-rich fluid, the only way to 

explain the T-X(CO
2
) relations of sample 14RB-07A, 

and other similar assemblages in the marble units 

is infiltration of an H
2
O-rich fluid. This would also 

potentially explain the δ18O values that are lighter than 

normal limestones. Pelitic rocks are likely to expel 

H
2
O-rich fluid during metamorphism as minerals 

such as chlorite and muscovite break down. The δ18O 

values of such fluid is expected to be much lighter 
than that of marble and could very well be responsible 

for lowering the δ18O values of the marble (Dunn, 

personal communication).
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