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 SIZE OF PERCHED LAVA PONDS AS A PRODUCT  

OF VOLUMETRIC FLUX 

NICHOLAS C. BROWNE, Pomona College

Research Advisors: Jeffrey A. Karson, Richard W. Hazlett, Eric B. Grosfils

INTRODUCTION

Perched lava ponds form during basaltic volcanic 

eruptions and occur when a channelized lava flow 
enters a region of flatter topography, after which 
the lava spreads radially and stalls due to increased 

cooling (Wilson and Parfitt, 1993). For a series of 
flows at Mauna Ulu Crater, Kilauea Volcano, Hawaii, 
Wilson and Parfitt (1993) find that both travel distance 
of radially spreading lava and pond diameters are 

strongly dependent on volumetric flux, which, in a 
channel of uniform width, is defined as

 V
c 
= U

c 
D

c 
W

c     
(1)

where W
c
 is width, U

c 
is flow velocity, and D

c
 is flow 

depth. Furthermore, in a situation in which U
c 
and D

c
 

are both treated as constant due to unchanging channel 

width, velocity can be approximated as

U
c 
= D

c

2ρg sin α/ Kμ     (2)

where μ is viscosity, ρ is flow density, g is 
gravitational acceleration, α represents the angle of 
the slope, and K is a constant dependent on the cross-

sectional geometry of a flow, defined as 3(1+2(D/W))2 

by Wilson and Parfitt (1993). Field measurements of 
channel width and depth can thus be used to estimate 

volumetric flux via this model.

A series of perched lava ponds is present in the 

flows originating from the 1975-1984 Krafla Fires 
fissure eruption in Iceland, which broke out across 
the crest and on the flanks of the Pleistocene 
Leirhnjukur hyaloclastite cone in northeastern Iceland 
(Brandsdottir and Einarsson, 1979; Hauksson, 1981; 
Hjartardottir et al., 2012). The Krafla ponds have 

not been studied extensively and are of particular 
interest due to their extent and freshness, which make 
them of potentially great use in studies of the role of 

volumetric flux in lava pond formation. 

For this project, the system of fissures at Leirhnjukur 
was mapped in relation to these ponds, and following 

fieldwork at Krafla, perched lava pond development 
was modeled via small-scale analogue ponds at 

Syracuse University, New York. Further studies were 
undertaken at Amboy Crater, a Pleistocene scoria 
cone in San Bernardino County, California, in order 

to examine a feature hypothesized to be a very large-
scale perched pond. The overall purpose was to 
determine whether pond size can be directly tied to 

volumetric flux, using data from both the Krafla and 
Amboy lava flows as well as data from the Syracuse 
pours. 

KRAFLA LAVA PONDS

At Leirhnjukur, a radial pattern of vents at the summit 
may mark the initial upwelling and outbreak of the 
1975 eruptions (Fig. 1). The other fissures, which 
run north-south, show en echelon offset; a series of 
fissures travels south from the Krafla cone itself, and 
approximately 400 m south of the cone, a parallel 
system of vents appears offset roughly 100 m to the 
east. This system continues south, passing Leirhnjukur, 
and the directional flow of the lava indicates that most 
of the lava was erupted from fissures in this region. 
The area immediately around Leirhnjukur is marked 
by several perched lava ponds (Fig. 1); the largest 
of these ponds (Pond 5 in Fig. 1) lies immediately 
south of Leirhnjukur, in a flat area nestled between a 
line of vents associated with an older eruption to the 
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west and mountains of pre-eruption tuff to the east. 

Field evidence suggests that the lava in this pond 
originated from fissures to the immediate east, and the 
close proximity of the pond to these fissures indicates 
that ponding occurred almost immediately after the 

lava was emplaced. Pond 3 in Figure 1, meanwhile, 
is situated to the immediate west of Leirhnjukur and 
to the north of the large pond, in the immediate area 

of the vents flanking Leirhnjukur. Unlike the large 
pond, it appears to have received inflow from both 
the spatter vents immediately to its east and from a 

channel to the south. The lava in this channel poured 
down a slope estimated conservatively to be about 

15˚, before reaching an essentially flat area into which 
lava from nearby vents was already pouring. 

both of which suggest intermittent overflow, overlie 
the levees. Supporting this hypothesis, there is a’a in 

the path of this outflow, slightly to the north; pahoehoe 
can transition to a’a when previously-stored lava is 

suddenly remobilized and forms clots (Peterson and 

Tilling, 1980), and Patrick and Orr (2012) find that 
rapidly moving a’a flows can develop with the sudden 
release of bodies of lava accumulated in perched 

ponds.

The pond itself is elliptical and has diameters of 100 
ft. (30.48 m) on the East-West axis and 75 ft. (22.86 
m) on the North-South Axis, yielding an approximate 
area of 547.24 m2. The channel feeding into this pond 
has an approximate width of 1 m and an approximate 
depth of 0.3 m, although the depth was difficult to 
measure. Harris et al. (2000), in their treatment of lava 
effusion rates at Krafla, use a lava density of 2600 kg 
m-3; they also estimate a viscosity of approximately 
100 Pa s for the dike-fed eruption at Krafla. Given 
that the lava in the channel moved down a slope of 

approximately 5˚, the average velocity through this 
channel would be 

U
c 
= ((0.3 m2)2 * (2600 kg m-3) * 9.8 m s-2 * 0.087) / 

7.68 * (102 Pa s) = 0.259 m s-2.

Using this value then gives us V = 0.3 * 1.0 * 0.259 
= 0.078 m3 s-1. Though a depth of 0.3 m is estimated, 
it could plausibly have varied between 0.1 and 0.5 
m; the velocity thus ranges from 0.05 and 0.46 m s-1, 

while the volumetric flux varies from 0.0051 and 0.23 
m3 s-1 (Fig. 2a). If the viscosity is increased to 1000 Pa 
s, U ranges from 0.005 to 0.046 m s-1, with V varying 
from 0.0005 to 0.023 m3 s-1 (Fig 2a); if it is decreased 
instead to 10 Pa s, U ranges from 0.51 to 4.62 m s-1, 

with V varying from 0.05 to 2.31 m3 s-1 (Fig. 2b).

These ranges stand in contrast with Wilson and 
Parfitt’s results from their case study at Mauna Ulu 
crater; they find that a pond approximately 70-80 m in 
diameter is associated with a flux of 12.6-16.0 m3 s-1. 

They note that this pond was short-lived, which may 
explain why such a large flux was needed to create a 
pond of that diameter in such a short time. In contrast, 
Harris et al. (2000) find that the time-averaged bulk 
eruption flux of Krafla during the 1950-1995 period 
was 0.86 m3 s-1, which is more in line with our 

estimates.

Figure 1. Location of ponds and vents in the Krafla lava flows. 
Image taken from ja.is.

The pond that is most applicable to this study is Pond 
2 in Figure 1. Notably, it has levees 2.5 m in height, 
far exceeding those seen at the other ponds in the 
region. The pond appears to have been exclusively 
fed by a channel approximately 1 m in width at the 
southwest corner of the pond, for there is no evidence 

of eruptive vents. The center of the pond does contain 
several features interpreted to either be hornitos or 

pieces of the levees, having broken off and been 
“suspended” in the center of the pond, a feature 

previously documented in lakes at Halemaumau 
and Kilauea Iki at Kilauea, Hawaii (Hazlett, 2014). 
Outflow from this pond appears to have been sporadic, 
for sheets of lava and a small network of pyroducts, 
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Pond 2 is characterized by the formation of levees at 

a distance from the initial inflow at which the slope 
steepens. This occurrence is counterintuitive, for the 
rate of flow would be expected to increase at such 
locations. It appears, however, that levee development 
was advanced enough by an early stage that lava was 

unable to spread as broad sheets or form channels, and 

instead was only able to exit via pyroducts or during 
brief periods of overflow. If the flux is indeed as low 
as modeled, the pond may have indeed been long-

lived, consistent with the degree of leveeing observed 

here. 

COMPARISON TO AMBOY CRATER, CALIFORNIA

Another volcanic terrain hypothesized to have perched 

lava ponds is the series of lava flows surrounding 
Amboy Crater, a scoria cone located approximately 
75 miles east of Barstow, CA. It is estimated to be 79 

Figure 2. Variation of U and V with D/W ratio at μ = 100 Pa s 
and 1000 Pa s (2a) and μ = 10 Pa s (2b), for Krafla.

ka and rises over a 70 km2 field of highly vesicular 
Pahoehoe emplaced over an alluvial plain (Phillips 

et al., 2003; Byrnes et al., 2006). The flows are 
associated with the Mojave Neovolcanic Province and 
are characteristic of the small-scale basaltic volcanism 

that occurred in Southern California from the Miocene 
onward (Allison et al., 2013); they are hummocky 
and devoid of pyroducts, with few distinct channels 

(Byrnes et al., 2006). There is some difficulty in 
comparing the Amboy volcanic field to the Krafla lava 
flows, in that the former is both less fresh and more 
heavily eroded than the latter. Additionally, much of 

the flow is at least partially covered by sand, much of 
it from the catastrophic flooding associated with the 
drainage of Lake Manix (Hazlett, pers. comm., 2014). 

A feature consisting of impounded lava is located 

approximately 1.5 km west of Amboy Crater itself 
(Fig. 3a); it may either be a perched pond or inflated 
lava situated over an active vent. Eye-shaped and 

having diameters 600 m (on its NE-SW axis) and 300 
m (on its NW-SE) axis, it is surrounded by a ridge, 
inside which the lava slopes gently downward towards 

the center (Fig. 3b). It has almost certainly undergone 
collapse, given the breakage of lava observed in the 
rim, but it is unclear from where precisely the lava 

originated, for directional flow of lava has essentially 
been erased by erosion. There is a feature in its 
northeastern corner that resembles a broken secondary 
vent, while two depressions along this same axis that 
are now filled with sand may also represent former 
vents (Fig. 3b). 

On the other hand, it is plausible that the feature 
was indeed fed by a channel to the northeast, given 

the morphology of that area, and that the ridge 

represents self-impounded levee development akin 
to that observed at Krafla (Fig. 3b). Following this 
assumption, the channel can be approximated as 
being 50 m wide and 2 m deep in order to estimate 
volumetric flux, although depth was very difficult 
do determine due to the condition of the lava. Values 
akin to those at Krafla were employed as proxies, with 
an angle of 0.1˚ being assumed due to the terrain’s 
flatness. 

While using a viscosity of 100 Pa s and density 
2600 kg m-3, 10.45 is obtained as the constant for K, 
yielding U and V values of 0.165 m s-1 and 16.5 m3 
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s-1, respectively. The depth might plausibly be varied 
between 1.0 and 3.0 m, which yields U = 0.13-1.06 m 
s -1 and V = 6.85-159.53 m3 s-1 (Fig. 4a). If viscosity 
changes to 10 Pa s, it instead yields U = 1.37-10.63 
m s-1 and V = 68.52-1595.3 m3 s-1 (Fig. 4b); changing 
it to 1000 Pa s yields U = 0.0137-0.106 m s-1 and V = 
0.685-15.95 m3 s-1 (Fig. 4c). 

Volumetric flux is very sensitive to channel depth, and 
there is also a great deal of uncertainty given that the 

exact viscosity is not known. The values obtained at 
μ = 10 Pa s are probably unrealistically large, even 
for a pond of this size, suggesting that the lava was 

somewhat more viscous than this. If the channel 
depth and viscosity are indeed 2 m and 100 Pa s, 
respectively, then the volumetric flux is on the scale 
of that observed by Wilson and Parfitt (1992) for their 
Hawaiian ponds; given the size of this pond, that result 
would suggest that it was very long-lived and slow-

filling.

ANALOGUE WORK AT SYRACUSE UNIVERSITY

Perched lava pond development was modeled via the 

Syracuse University Lava Project, which employs a 
furnace large enough to melt significant quantities 
of basalt and generate small flows. Basalt obtained 
from the Precambrian Keweenawan Rift in northern 

Wisconsin was melted and poured onto a sand terrain. 

Lava poured down a metal chute 30 cm in width, onto 
a slope of 5˚, and the pours were filmed using both 

Figure 3. Possible pond: location in relation to Amboy crater 
(3a), closeup showing possible vents (3b).

Figure 4. Variation of U and V with D/W ratio at μ = 100 Pa s 
(4a), 10 Pa s (4b), and 1000 Pa s (4c), for Amboy.
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conventional video and Forward-Looking Infrared 
(FLIR) footage. 

Since the amount of lava present in the furnace was 

orders of magnitude smaller than that emitted by 

either Krafla or Amboy, the system was heavily scaled 
down. The ratio of depth to width is constrained well 
at approximately 3 cm to 30 cm, or 0.1, which is close 
to the ratios inferred for Krafla and Amboy. Due to the 
small volume of lava, however, the model is affected 

by rapid cooling, and it is also essentially degassed 

due to having been recycled so many times. 

Two pours were undertaken, with the size of the 
resultant pond being essentially the same in each case. 

The first pour was underlain by an elliptical pit of 
diameters 0.3 and 0.5 m; the lava immediately flowed 
into this pit and spread radially, cooling rapidly and 

forming a pond approximately 30 cm in diameter, with 
outflow occurring in a breakout zone of no more than 
10 cm in width. Replacing this pit with three small pits 
of 15 cm diameter did not change the diameter of the 
pond significantly. The form of the ponds, however, 
was heavily influenced by pre-existing topography, as 
observed at Krafla: in this second pond, some lava was 
able to pour around the cooling lava, since less of it 

was arrested by a large depression.

The D/W ratio yields 4.32 for the constant K, and 
given this value and the slope of 5˚, viscosity and 
density are fixed at 100 Pa s and 2600 kg m-3, 

respectively, to obtain U = 0.000651-0.0104 m s-1 

and V = 0.00000195-0.000156 m3 s-1 (Fig. 5a). Since 
the channel depth is fairly well constrained at 0.03 
m, the most likely values for U and V are 0.00463 m 
s-1 and 0.0000416 m3 s-1, respectively (Fig. 5a). The 
lava actually flowed at approximately 0.1 m s-1, and 

it is likely that the viscosity was in fact somewhat 
lower; a value of 10 Pa s produces U = 0.006-0.104 m 
s-1 and V = 0.0000195-0.00156 m3 s-1, with U=0.046 
m s-1 corresponding to the channel depth (Fig. 5b). 
These data still yield velocities that are far too slow, 
which suggests that the scale of the flow, and possibly 
the altered properties of the basalt, make this setup 
difficult to compare to Krafla and Amboy. 

CONCLUSION

Data from the Krafla and Amboy lava fields support 
the notion that the overall size of a pond is strongly 

dependent on volumetric flux; longer-lived ponds may, 
however, typically be associated with lower fluxes, 
which complicates this relationship. More definite 
viscosity data are needed for the Amboy flows, as is 
further research into whether the feature considered is 

a perched pond at all. 
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