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BURN SEVERITY EFFECTS ON HILL-SLOPE SOIL 

CHARACTERISTICS AND LOCAL VARIATION FOUR YEARS 

AFTER THE FOURMILE FIRE, BOULDER COUNTY, CO

OMAR KAUFMAN,Carleton College

Research Advisor: Mary Savina

INTRODUCTION

Fourmile Creek is located in the Colorado Front Range 

and flows into Middle Boulder Creek four miles 
outside historic Boulder. The study area is primarily 
underlain by granitic and high-grade metamorphics of 
sillimanite grade (Dethier et al., 2014). The Fourmile 
creek eroded into uplifted bedrock following the 
Laramide orogeny (Anderson et al., 2006). Bedrock is 
exposed on canyon slopes and locally along Fourmile 
Creek. The area has been heavily altered with mine 
tailings, waste rock, and construction remnants 
scattered through the watershed (Graham et al., 2012; 
Writer et al., 2012). 

From September 6-10 2010, the Fourmile Canyon 
burned. According to the USGS, 23 percent of the 
2,600 hectare watershed was burned by a mixed 
severity fire (Graham et al., 2012; Writer et al., 2012). 
This fire burned through the lower portions of the 
watershed, leaving the soils and vegetation of the 
upper watershed unaltered by the fire. The impacts 
of fires can vary dramatically, with burn severity 
quantitatively and qualitatively measuring these effects 
(Bento-Goncalves et al., 2012; Keeley, 2009; Parsons, 
2010). Burn severity is characterized by unburned, low 
burn, moderate burn, or high burn for each location. 
Burn severity was measured by satellite using the 
“difference Normalized Burn Ratio” (dNBR) at a 
resolution of 30 m2pixels (Ebel et al., 2012; Keeley, 2009; 
Key and Benson, 2006). This burn severity assessment 
was ultimately utilized to determine erosion 
remediation strategies and areas of interest after the 
burn (Graham et al., 2012). The Black Tiger Fire of 
1989, also considered in this paper, burned mostly in 
adjacent watersheds (NFPA, 1992). These two fires 

were major burns that have dramatically altered the 
vegetation and soil of Fourmile Canyon (Calkin et al., 
2014; Dickinson, 2014). 

When a landscape burns, the soil and associated 
systems can be dramatically altered. Fires remove 
organic material from the landscape, which leaves 
the soil bare and unprotected from raindrop impact 
(Robichaud, 2000; Shakesby et al., 2003; Shakesby 
and Doerr, 2006). Moreover, hydrophobic substances 
are vaporized during a fire and are driven down into 
the soil, where they reform a lower, hydrophobic layer 
(DeBano, 2000). These characteristics ultimately lead 
to the destabilization of hillslope soils and increased 
erosion following fires (Cerda and Doerr, 2008; 
Stoof et al., 2015). As material is transported over the 
landscape, soils and their characteristics can easily 
change.

Understanding how fires affect soils on greater time 
scales is important for understanding how landscapes 
change. The recovery of moderately burned areas is 
not identical with that of highly burned soils. Four 
years after a fire burned a ponderosa pine forest in 
Arizona, moderately burned areas had dropped down 
to normal levels of runoff, the same study showed 
runoff on highly burned soils increased over three 
orders of magnitude relative to the control immediate 
after the fire and remained an order of magnitude 
higher four years after the burn (Campbell et al., 
1977; Shakesby and Doerr, 2006). Another study 
found that runoff on the catchment scale remained 
elevated for the first three years following a fire 
and then began approaching control levels after five 
years (Mayor et al., 2007). In an 11-year study of 
revegetated, Mediterranean soils after fire, all soils lost 
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their hydrophobic surface soil to erosion within six to 
twelve months (Cerda and Doerr, 2005).

METHODS

Samples were collected from lower Fourmile Canyon, 
Colorado in July 2014. Soils from the area of both 
the 2010 Fourmile fire and 1989 Black Tiger were 
sampled, as well as unburned areas (Fig. 1). Samples 
were acquired in groups of ten as either a transect or 
a “type” site. For transects, samples were collected 
every 5 m across boundaries between burn severity 
zones, perpendicular or parallel to the slope. “Type” 
site were used to broadly characterize different burn 
severity zones. These samples were taken in matrices 
of 2 by 5 meters with spacing every two m and the 
long axis of the grid perpendicular to the slope. 

Samples were acquired using a tulip bulb sampler of 

Samples were dried and sieved using the Wentworth 
Phi system with 1ϕ (2 mm), 0 ϕ (1 mm), -1 ϕ (.5 mm), 
-2 ϕ (250 μm), and -3 ϕ (125 μm) sieves. Due to the 
absence of a -1ϕ sieve, an .589 mm sieve was used in 
its place. LOI was measured on the <125 μm fraction 
at ~550° C. For increased accuracy on LOI >10 g was 
used for each sample of at least that size in the <125 
μm fraction. The diameters of the thickest roots were 
measured from those in the > 2 mm fraction. Fallout 
radionuclides were measured from the <125 micron 
fraction of five samples each from sites 21 and 22. For 
a more detailed description of methods see Abrahams 
contribution to this volume. 

Table 1. “Type” site descriptions and observation characteristics 
(See Figure 1 for site locations).

Figure 1. Map of Lower Fourmile Canyon. Burn Severity satellite 
data from Graham et al. (2012) is overlain on high-resolution 
digital elevation model. Red maps for high burn severity; orange 
for moderate burn severity; yellow for low burn severity; and, 
green for unburned. Areas beyond the extent of the satellite data 
were unburned in the Fourmile Fire. Sites 20 and 21 are within 
the extent of the Black Tiger 1989 fire.

diameter 7.5 cm and approximate length of 15 cm. 
Due to the rockiness of many of these soils, samples 
were taken within 0.5 m of the marked location. 
Samples represent areas where boulders or larger 
vegetation did not impede sampling. Maximum 
sample depth was 15 cm (length of bulb sampler); 
some samples were thinner because of impedance 
from rocks. Due to a general looseness of soil, 
samples were dug out from the downslope side and 
captured with a spade at the lower side of the tulip 
bulber. 

Figure 2. Bulk density graph of “type” sites. Each bar shows the 
range of results and the mean. North-facing sites are on the left, 
south-facing sites are on the right. See Table 1 for burn severity. 
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RESULTS

Ten type sites were sampled and observed covering 
a broad range of slopes and burn severities (Table 1). 
Grain size analysis showed no correlation between 
site and burn severity. Dry, bulk density of the soil 
was relatively elevated at sites both on north- and 
south-facing slopes (Fig. 2). South-facing slopes 
appear to have a higher concentration of larger 
particles compared to all burned sites (Black Tiger 

and Fourmile). Otherwise, grain size distribution 
shows no significant difference across sites. LOI 
records significant differences on north-facing slopes 
(Fig. 3). The average LOI for the high burn site is 
6.70%, with a range of 5.61% to 8.06%. Both the 
Black Tiger site and the three unburned sites record 
averages significantly higher LOI (11.65%, 20.68%, 
10.13%, 12.14%) with only one site having an 
overlapping range. While south-facing slopes have 
average LOI lower than unburned slopes, the ranges 
overlap. Average root thicknesses show similarly 
muted results. For north-facing sites, root thickness 
shows average values lower for high burn and Black 
Tiger burn sites (.5 mm, 1.4 mm) compared with 
unburned sites (1.7 mm, 1.9 mm, 2.3 mm). South-
facing sites do not show any significant difference; 
the lowest average root thickness was at an unburned 
site. Radionuclide data were found for sites 21 and 22, 
a 25-year-burn, north-facing slope and an unburned, 
north-facing slope, respectively. Site 22 has remained 
unburned for at least 120 years, shown by Ponderosa 
pine cores showing 124 and 117 years of growth 
rings. Radionuclide data for sites 21 and 22 show no 
significant variation in concentrations of 226Ra, 210Pb, 
and 137Cs (Fig. 4). 

Figure 3. LOI by percent graph of “type” sites. Each bar shows 
the range of results and the mean.  North-facing sites are on 
the left, South-facing sites are on the right. See Table 1 for burn 
severity. Figure 4. Box plot of radionuclide concentrations for Site 21 and 

22. Concentrations of show median, quartiles, minimum, and 
maximum ranges for 226Ra, 220Pb, and 137Cs. Outliers are marked 
with empty circles.
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Transects recorded some variation in data across 
boundaries. Transects 12 and 14 were perpendicular 
to the slope and crossed boundaries between low 
and moderate burn sites. Transect 13 was the same 
except parallel to the slope. These sites recorded no 
significant differences across the transect for root 
thickness, grain size, LOI by percent, and organic/A 
horizon depth. Transect 7 crossed unburned and 
high-burned areas on the north-facing slope. LOI by 
percent, grain size, and root thickness did not vary 
significantly across the transect. However, organic/A 
horizon depth became thinner within the high burned 
area with distance from the boundary. This transect 
was also mapped as entirely within a low-burn severity 
pixel by satellite data.

DISCUSSION

Data from this study indicate that transects across 
burn severity zones correspond moderately well to 
on the ground differences four years post fire. While 
the accuracy of dNBR measurements recorded 
immediately after a fire have been questioned (Roy 
et al., 2006), the greatest inconsistencies have been 
shown to be across varying vegetation types (Allen 
and Sorbel, 2008). Given that many studies have 
focused on vegetation terrains consistent with our field 
area, its likelyetation (Cocke et al., 2005; Miller and 
Thode, 2007; Odion and Hanson, 2006). This data 
set is consistent with findings showing that the dNBR 
is relatively more accurate at high burn severity and 

that it’s main weakness is along perimeters (Cocke 
et al., 2005; van Wagtendonk et al., 2004). These 
relationships hold up with time. Immediate post-fire 
dNBR has been shown to be relatively comparable 
to dNBR data 1-year-post burn (Lentile et al., 2009). 
While the comparison proved statistically significant, 
in the study by Lentile et al. (2009), the 1-year-post-
fire burn severity data distinguished least well between 
low and moderate burn. Similarly, our data show that 
low and moderately burned sites can be relatively 
indistinguishable, while the highly burned site records 
the strongest differences in most tests (Fig. 2,3). 

These samples also reveal that local variance can 
affect how burns influences the soil. For tests such 
as LOI and bulk dry density, the high burn site had 
noticeable differences from the controls. Because 
high burn was only sampled on the north-facing 

slopes, these differences may not hold up on the 
south-facing slopes, where there is less vegetation, 
litter cover, and organic matter for fires to remove. 
However, distinctions between sites were only 
observed in certain tests. The elevated bulk dry density 
of burned sites (Fig. 2) could be due to the removal 
of light-weight organic matter and/or the removal of 
lighter particle by erosion due to exposure post-burn. 
However, the broad and overlapping range of bulk 
density results from a single site could be accounted 
for by many different factors; soils could have been 
different pre-burn, the soils burned differently, and/
or recovered differently over the following four years. 
Similar ranges in LOI results could be accounted for 
in these ways. Our samples are also confounded by 
dilution due to depth of sampling. The effects of fire 
on soils are often limited to the upper 5 cm of the soil 
(Stoof et al., 2013). Because samples were taken at 
varying depths, local variation in some tests could be 
accounted for by different levels of sample dilution 
due to depth.

For fallout radionuclides, the variance between 
samples was not significant. These were done for 
both site 21 and 22 (North-facing, Black Tiger burn 
and North-facing, unburned respectively). As these 
samples do not show significant variations in 226Ra, 
210Pb, and 137Cs for each site, we can draw the initial 
conclusion that fire and erosion do not greatly affect 
concentrations of fallout radionuclides on relatively 
low slopes. However, these initial results from only 
ten samples out of the entire study, must be confirmed 
by analysis of more sample sites. 

CONCLUSIONS

1.  Four years after the fire, burn severity inferred 
from satellite data is still most consistent with 
ground observations furthest from the boundaries. 
Differences between low and moderate burns are 
nearly negligible in the field after four years of 
recovery.

2.  The average LOI and bulk dry density over a single 
site may reveal long-term differences between 
burned and unburned soils. However, significant 
local variation in many soil characteristics show that 
a single sample can look significantly different from 
the mean. 
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3.  Preliminary radionuclide measurements suggest that 
there is no significant difference in the effect of fire 
and erosion across two sites, one burned and one 
unburned in recent history. 
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