PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL KECK RESEARCH SYMPOSIUM IN GEOLOGY

April 2015
Union College, Schenectady, NY

Dr. Robert J. Varga, Editor
Director, Keck Geology Consortium
Pomona College

Dr. Holli Frey
Symposium Convener
Union College

Carol Morgan
Keck Geology Consortium Administrative Assistant

Christina Kelly
Symposium Proceedings Layout & Design
Office of Communication & Marketing
Scripps College

Keck Geology Consortium
Geology Department, Pomona College
185 E. 6th St., Claremont, CA 91711
(909) 607-0651, keckgeology@pomona.edu, keckgeology.org

ISSN# 1528-7491

The Consortium Colleges The National Science Foundation ExxonMobil Corporation
RESILIENCE OF ENDANGERED ACROPORA SP. CORALS IN BELIZE. WHY IS CORAL GARDENS REEF THRIVING?:
Faculty: LISA GREER, Washington & Lee University, HALARD LESCINSKY, Otterbein University, KARL WIRTH, Macalester College
Students: ZEBULON MARTIN, Otterbein University, JAMES BUSCH, Washington & Lee University, SHANNON DILLON, Colgate University, SARAH HOLMES, Beloit College, GABRIELA GARCIA, Oberlin College, SARAH BENDER, The College of Wooster, ERIN PEELING, Pennsylvania State University, GREGORY MAK, Trinity University, THOMAS HEROLD, The College of Wooster, ADELE IRWIN, Washington & Lee University, ILLIAN DECORTE, Macalester College

TECTONIC EVOLUTION OF THE CHUGACH-PRINCE WILLIAM TERRANE, SOUTH CENTRAL ALASKA:
Faculty: CAM DAVIDSON, Carleton College, JOHN GARVER Union College
Students: KAITLYN SUAREZ, Union College, WILLIAM GRIMM, Carleton College, RANIER LEMPERT, Amherst College, ELAINE YOUNG, Ohio Wesleyan University, FRANK MOLINEK, Carleton College, EILEEN ALEJOS, Union College

EXPLORING THE PROTEROZOIC BIG SKY OROGENY IN SW MONTANA: METASUPRACRUSTAL ROCKS OF THE RUBY RANGE
Faculty: TEKLA HARMS, Amherst College, JULIE BALDWIN, University of Montana
Students: BRIANNA BERG, University of Montana, AMAR MUKUNDA, Amherst College, REBECCA BLAND, Mt. Holyoke College, JACOB HUGHES, Western Kentucky University, LUIS RODRIGUEZ, Universidad de Puerto Rico-Mayaguez, MARIAH ARMENTA, University of Arizona, CLEMENTINE HAMELIN, Smith College

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1358987
ExxonMobil Corporation
GEOMORPHOLOGIC AND PALEOENVIRONMENTAL CHANGE IN GLACIER NATIONAL PARK, MONTANA:
Faculty: KELLY MACGREGOR, Macalester College, AMY MYRBO, LabCore, University of Minnesota
Students: ERIC STEPHENS, Macalester College, KARLY CLIPPINGER, Beloit College, ASHLEIGH, COVARRUBIAS, California State University-San Bernardino, GRAYSON CARLILE, Whitman College, MADISON ANDRES, Colorado College, EMILY DIENER, Macalester College

ANTARCTIC Plio-Pleistocene (Gelasian) PALEOCHEMISTRY RECONSTRUCTED FROM OCEAN DRILLING PROGRAM WEDELL SEA CORES:
Faculty: SUZANNE O’CONNELL, Wesleyan University
Students: JAMES HALL, Wesleyan University, CASSANDRE STIRPE, Vassar College, HALI ENGLERT, Macalester College

HOLOCENE CLIMATIC CHANGE AND ACTIVE TECTONICS IN THE PERUVIAN ANDES: IMPACTS ON GLACIERS AND LAKES:
Faculty: DON RODBELL & DAVID GILLIKIN, Union College
Students: NICHOLAS WEIDHAAS, Union College, ALIA PAYNE, Macalester College, JULIE DANIELS, Northern Illinois University

GEOLOGICAL HAZARDS, CLIMATE CHANGE, AND HUMAN/ECOSYSTEM RESILIENCE IN THE ISLANDS OF THE FOUR MOUNTAINS, ALASKA
Faculty: KIRSTEN NICOLAYSEN, Whitman College
Students: LYDIA LOOPESKO, Whitman College, ANNE FULTON, Pomona College, THOMAS BARTLETT, Colgate University

CALIBRATING NATURAL BASALTIC LAVA FLOWS WITH LARGE-SCALE LAVA EXPERIMENTS:
Faculty: JEFF KARSON, Syracuse University, RICK HAZLETT, Pomona College
Students: MARY BROMFIELD, Syracuse University, NICHOLAS BROWNE, Pomona College, NELL DAVIS, Williams College, KELSA WARNER, The University of the South, CHRISTOPHER PELLAND, Lafayette College, WILLA ROWEN, Oberlin College

FIRE AND CATASTROPHIC FLOODING, FOURMILE CATCHMENT, FRONT RANGE, COLORADO:
Faculty: DAVID DETHIER, Williams College, WILLIAM. B. OUIMET, University of Connecticut, WILLIAM KASTE, The College of William and Mary
Students: GREGORY HARRIS, University of Connecticut, EDWARD ABRAHAMS, The College of William & Mary, CHARLES KAUFMAN, Carleton College, VICTOR MAJOR, Williams College, RACHEL SAMUELS, Washington & Lee University, MANEH KOTIKIAN, Mt. Holyoke College

SOPHOMORE PROJECT: AQUATIC BIOGEOCHEMISTRY: TRACKING POLLUTION IN RIVER SYSTEMS
Faculty: ANOUK VERHEYDEN-GILLIKIN, Union College
Students: CELINA BRIEVA, Mt. Holyoke College, SARA GUTIERREZ, University of California-Berkeley, ALESDIA HUNTER, Beloit College, ANNY KELLY SAINVIL, Smith College, LARENZ STOREY, Union College, ANGEL TATE, Oberlin College

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1358987
ExxonMobil Corporation
TECTONIC EVOLUTION OF THE PRINCE WILLIAM TERRANE IN RESURRECTION BAY AND EASTERN PRINCE WILLIAM SOUND, ALASKA
CAMERON DAVIDSON, Carleton College
JOHN I. GARVER, Union College

ANNEALING RADIATION DAMAGE IN PRECAMBRIAN ZIRCON IN WHALE BAY, ALASKA AND LABORATORY EXPERIMENT
KAITLYN SUAREZ, Union College
Research Advisor: John I. Garver

PROVENANCE OF THE CHUGACH-PRINCE WILLIAM TERRANE, ALASKA, FOCUSING ON THE PALEogene ORCA GROUP, USING U-Pb DATING OF DETRITAL ZIRCONS
WILLIAM E. GRIMM, Carleton College
Research Advisor: Cameron Davidson

MAGMA MIXING OVER A SLAB WINDOW: GEOCHEMISTRY AND PETROLOGY OF THE SHEEP BAY AND MCKINLEY PEAK PLUTONS, PRINCE WILLIAM SOUND, ALASKA
RAINER LEMPERT, Amherst College
Research Advisor: Peter Crowley

TECTONIC EVOLUTION OF THE CHUGACH-PRINCE WILLIAM TERRANE: GEOCHEMISTRY OF THE ORCA GROUP VOLCANIC ROCKS IN EASTERN PRINCE WILLIAM SOUND, ALASKA
ELAINE K. YOUNG, Ohio Wesleyan University
Research Advisor: Karen Fryer

DETRITAL ZIRCON U/Pb AGES AND PROVENANCE STUDY OF THE PALEOCENE TO MIocene TOFINO BASIN SEDIMENTARY SEQUENCE, OLYMPIC PENINSULA, WASHINGTON
FRANK R. MOLINEK III, Carleton College
Research Advisor: Cameron Davidson, John Garver

ZIRCON FISSION TRACK AGES OF THE ORCA GROUP ON HINCHINBROOK ISLAND, ALASKA
EILEEN ALEXANDRA ALEJOS, Union College
Research Advisor: John I. Garver

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1358987
ExxonMobil Corporation
TECTONIC EVOLUTION OF THE PRINCE WILLIAM TERRANE IN RESURRECTION BAY AND EASTERN PRINCE WILLIAM SOUND, ALASKA

CAMERON DAVIDSON, Carleton College
JOHN I. GARVER, Union College

INTRODUCTION

An outstanding question in the assembly of the North American Cordillera is the accretion and subsequent translation history of the Campanian to Eocene Chugach-Prince William terrane (CPW) that extends for ~2200 kilometers along southern Alaskan margin (Fig. 1). The CPW is a thick accretionary complex primarily composed of deep-water turbidites with abundant quartzofeldspathic and volcanic-lithic sandstones and basaltic rocks (Plafker et al., 1994) that was intruded by near-trench plutons of the Sanak-Baranof belt (Hudson et al., 1979; Bradley et al., 2000) inferred to be related to the subduction of the Kula-Farallon or Kula-Resurrection plate ridge (Bradley et al., 2003; Haeussler et al., 2003; Cowan, 2003). There are two prevailing, but mutually exclusive hypotheses for the position of formation of the CPW along the Cordilleran margin: 1) The CPW formed more or less in place and ridge subduction progressed from west to east along the southern Alaskan margin during subduction of the Resurrection plate (Haeussler et al., 2003); or 2) the CPW formed far to the south and was intruded by near-trench plutons at 48-49°N during coastwise translation of the CPW (Cowan, 2003). The possible formation of the CPW far to the south and subsequent translation along the continental margin in the Paleocene and Eocene may be a defining event in Cordilleran tectonics and makes testable predictions for the provenance and thermal evolution of these rocks.

This contribution summarizes our findings from the fourth year of a Keck Geology Consortium and NSF-supported project to understand the tectonic and thermal evolution of the Chugach-Prince William Terrane in southern Alaska. In summer 2014 our research team included six students from four different undergraduate institutions who spent four weeks in the field working in Resurrection Bay out of Seward, and in eastern Prince William Sound out of Cordova (Fig. 2).

Figure 1. Extent of the Chugach-Prince William terrane in south central Alaska. 2014 field areas are indicated by boxes. Pluton locations and dates are from Farris and Patterson (2009) and Bradley et al. (2003). Map modified from Pavlis and Roeske (2007).
PROJECT GOALS

The specific objectives for 2014-15 include: 1) determine the provenance, maximum depositional ages, and thermal history of the flysch of the Orca Group in eastern Prince William Sound; 2) sample and measure the whole-rock geochemistry of interbedded pillow basalts and associated volcanic rocks of the Orca Group around Cordova and compare with similar rocks of the Knight Island ophiolite and Chenega Island volcanics in western Prince William Sound; 3) determine the crystallization age, geochemistry, and zircon Hf-isotope systematics of the Sheep Bay and McKinley Peak plutons, part of the Paleocene Sanak-Baranof belt of plutons near Cordova; and 4) obtain detrital zircon U-Pb dates from previously collected samples from the Tofino basin (Garver and Brandon, 1994) and underlying Blue Mountain unit of the Crescent Formation located in the Olympic Mountains of Washington. In addition, we complement much of these efforts with ongoing studies of crystallinity in Precambrian zircon using Raman spectroscopy.

Figure 2. Geologic map of Resurrection Bay and Prince William Sound, Alaska. Sample locations shown as black dots; boxes show the maximum depositional age determined from the youngest three zircon grains (brown) and youngest coherent population (green) using AgePick (Excel macro provided by G. Gehrels, University of Arizona). Samples along Turnagain Arm (AnJ) and near Whittier (KeD) are from Amato et al. (2013). Map modified from Bradley and Miller (2006).
RESEARCH

Age, Provenance, and Thermal History of the Orca Group in Eastern Prince William Sound

Bill Grimm (Carleton College) measured 1931 detrital zircon U-Pb dates from eight samples of volcanic-lithic and arkosic sandstones collected from the Orca Group near Cordova, Alaska. Combined with previously collected U-Pb data from the Orca Group near Cordova and one sample from the Valdez Group northeast of Valdez, Alaska (unpublished data) he was able to show that the maximum depositional ages from these rocks range from 62-51 Ma (Fig. 2). This is a remarkable result because it encompasses a large area of rock (>11,000 km2) with over 70 km of structural thickness that must have been eroded, deposited and accreted to the North American margin in ~10 Ma. This result also suggests at least some of the rock mapped as the Valdez Group, including the type area of Port Valdez, in eastern Prince William Sound is Paleocene and not Maastrichtian in age. This study also shows that the grain-age distributions in this area are nearly identical to those in western Prince William Sound (Hilbert-Wolf, 2012), suggesting that the source area for these rocks is the Coast Plutonic Complex in southeast Alaska and British Columbia.

Elaine Young (Ohio Wesleyan University) analyzed 13 samples from the basaltic volcanic rocks and pillow basalts interbedded with the flysch of the Orca Group. Using major and trace element geochemistry, she shows that most of these volcanic rocks have MORB signatures, with some samples having a subduction related component. Based on the distribution of rare earth elements, she shows that there are three related, but distinct sources for the basaltic magmas and that most of the samples from eastern Prince William Sound (PWS) appear to correlate with the Knight Island ophiolite and Chenega volcanics in western PWS (Miner, 2012). She compares these results with previously published data from similar age volcanic rocks from the Yakutat (Alaska) and Crescent (Washington) terranes to the east and south and suggests that the basalts are all derived from distinct but related source regions supporting that these rocks my have once been contiguous.

Rainer Lempert (Amherst College) focused on the petrogenesis and crystallization ages of the Sheep Bay and McKinley Peak plutons, part of the Sanak-Baranof belt of plutons that intrude the Chugach-Prince William terrane. Mafic enclaves and host granites are predominantly metaluminous in the Sheep Bay pluton and those from the McKinley Peak are peraluminous suggesting slightly different source regions for the granites. The Sheep Bay pluton intrudes Orca Group rocks with a maximum depositional age of 57 Ma (Grimm, this volume) and U-Pb zircon crystallization ages of 54.8 ± 0.7 Ma and 54.5 ± 1.7 Ma for the Sheep Bay and McKinley Peak plutons, respectively, show that the Orca Group sedimentary rocks were deposited, buried and intruded by these plutons in a relatively short period of time. Zircon in the Sheep Bay pluton has more evolved Hf-isotope ratios than the McKinley Peak pluton supporting previous studies (Barker et al. 1992) that the two plutons were derived from geochemically and isotopically distinct source regions.

Eileen Alejos (Union College) applied detrital zircon fission track (ZFT) dating to sandstones from across the Rude River Fault on Hinchinbrook Island (Fig. 2). She shows that these rocks have been partially reset during regional low-grade metamorphism as evidenced by multimodal grain age populations, the youngest of which is less than depositional age. Most of the samples have a youngest reset population (>10% of grains) with a peak between 25-35 Ma. This important thermal event occurs everywhere in the CPW east of the Kenai Peninsula (Enkelmann et al., 2008, Izykowski et al., 2011; Carlson, 2012; Kaminski, 2014), and might be related to the arrival and initial subduction of the Yakutat block (Enkelmann et al., 2008) or strike slip motion along the Alaskan margin (Kaminski, 2014).

Provenance of the Tofino Basin, Olympic Peninsula, Washington

Rudy Molinek (Carleton College) builds on the work of Garver and Brandon (1994) and completes the first detailed study of detrital zircon U-Pb ages from the Eocene to Oligocene Tofino basin and underlying Blue Mountain unit of the Crescent Formation that crops
out along the northern coast of the Olympic Peninsula in Washington. He shows that the Blue Mountain unit, that interfingers with the base of the Crescent basalts, might be as young as 48 Ma. If this holds up, it implies that >16 km of the Crescent basalts were extruded in < 1 Ma (cf. Wells et al., 2014). U-Pb zircon ages from the Tofino basin support the conclusions of Garver and Brandon (1994) that these rocks were largely derived from the Coast Plutonic Complex. However, the grain-age populations are distinctly different than those from age-correlative parts of the Orca Group in Prince William Sound, suggesting that these sedimentary basins did not share the same drainage basin.

Zircon Crystallinity

Kaitlyn Suarez (Union College) conducted laboratory and natural annealing experiments to help understand the role of U content, time, and temperature on the crystallinity of zircon using Raman spectroscopy. Laboratory experiments were conducted on fragments of the 564 Ma Sri Lanka zircon standard with a nominal U content of 518 ppm over a temperature range of 400°C to 1000°C. She shows that the most dramatic change in the Raman spectra occurs between 400°C and 800°C. Her natural experiment used Precambrian zircons collected and dated by Rick (2013) from regionally metamorphosed rocks of the Sitka greywacke on Baranof Island, Alaska. These rocks record a steep metamorphic field gradient from prehnite-pumpellyte facies rocks to biotite-andalusite zone rocks of the amphibolite facies near the Crawfish Inlet pluton. Her results show a distinct Raman shift indicating increasing crystallinity of zircon near the pluton. This work holds great promise as another powerful tool to help constrain zircon provenance in detrital studies.

ACKNOWLEDGMENTS

This research was made possible by grants from the Keck Geology Consortium and the National Science Foundation (NSF EAR 1116554 to Garver; EAR 1116536 to Davidson, and EAR 1062720 to Keck/ Varga). U/Pb zircon analyses were conducted at the Arizona LaserChron Center (EAR 1338583), which is an NSF multi-user facility at the University of Arizona. We are indebted to Mark Pecha, Nicky Giesler, and George Gehrels at the LaserChron Center for their unselfish help and strong support for undergraduate research. Raman analyses were made possible through funding by NSF DMR 0959272 to Garver for the acquisition of the Raman Spectrometer at Union College. We have had fruitful planning discussions for field logistics and we have enjoyed a lively scientific discourse with Peter Haeussler, Dwight Bradley, Darrel Cowan, Mark Brandon, Phil Armstrong, Steve Nelson, Sue Karl, Marti Miller, Kevin Kveton, Terry Pavlis, and Casey Moore. We also thank John Johnson, of the Chugach Native Corporation for logistical support and access to Hichinbrook Island. Tom and Kevin provided hospitality and support on Nuchek Island. Finally we appreciate the thoughtful guidance and mentoring of Peter Crowley (Amherst College) and Karen Fryer (Ohio Wesleyan University).

REFERENCES

Hilbert-Wolf, H.L., 2012, U/Pb detrital zircon provenance of the flysch of the Paleogene Orca Group, Chugach-Prince William terrane, Alaska; Proceedings from the 25th Keck Geology Consortium Undergraduate Research Symposium, Amherst MA, 23-32

