RESILIENCE OF ENDANGERED ACROPORA SP. CORALS IN BELIZE. WHY IS CORAL GARDENS REEF THRIVING?:
Faculty: LISA GREER, Washington & Lee University, HALARD LESCINSKY, Otterbein University, KARL WIRTH, Macalester College
Students: ZEBULON MARTIN, Otterbein University, JAMES BUSCH, Washington & Lee University, SHANNON DILLON, Colgate University, SARAH HOLMES, Beloit College, GABRIELA GARCIA, Oberlin College, SARAH BENDER, The College of Wooster, ERIN PEELING, Pennsylvania State University, GREGORY MAK, Trinity University, THOMAS HEROLD, The College of Wooster, ADELE IRWIN, Washington & Lee University, ILLIAN DECORTE, Macalester College

TECTONIC EVOLUTION OF THE CHUGACH-PRINCE WILLIAM TERRANE, SOUTH CENTRAL ALASKA:
Faculty: CAM DAVIDSON, Carleton College, JOHN GARVER Union College
Students: KAITLYN SUAREZ, Union College, WILLIAM GRIMM, Carleton College, RANIER LEMPERT, Amherst College, ELAINE YOUNG, Ohio Wesleyan University, FRANK MOLINEK, Carleton College, EILEEN ALEJOS, Union College

EXPLORING THE PROTEROZOIC BIG SKY OROGENY IN SW MONTANA: METASUPRACRUSTAL ROCKS OF THE RUBY RANGE
Faculty: TEKLA HARMS, Amherst College, JULIE BALDWIN, University of Montana
Students: BRIANNA BERG, University of Montana, AMAR MUKUNDA, Amherst College, REBECCA BLAND, Mt. Holyoke College, JACOB HUGHES, Western Kentucky University, LUIS RODRIGUEZ, Universidad de Puerto Rico-Mayaguez, MARIAH ARMENTA, University of Arizona, CLEMENTINE HAMELIN, Smith College

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1358987
ExxonMobil Corporation
GEOMORPHOLOGIC AND PALEOENVIRONMENTAL CHANGE IN GLACIER NATIONAL PARK, MONTANA:
Faculty: KELLY MACGREGOR, Macalester College, AMY MYRBO, LabCore, University of Minnesota
Students: ERIC STEPHENS, Macalester College, KARLY CLIPPINGER, Beloit College, ASHLEIGH, COVARRUBIAS, California State University-San Bernardino, GRAYSON CARLILE, Whitman College, MADISON ANDRES, Colorado College, EMILY DIENER, Macalester College

ANTARCTIC PLIOCENE AND LOWER PLEISTOCENE (GELASIAN) PALEOCRIMATE RECONSTRUCTED FROM OCEAN DRILLING PROGRAM WEDDELL SEA CORSES:
Faculty: SUZANNE O’CONNELL, Wesleyan University
Students: JAMES HALL, Wesleyan University, CASSANDRE STIRPE, Vassar College, HALI ENGLERT, Macalester College

HOLOCENE CLIMATIC CHANGE AND ACTIVE TECTONICS IN THE PERUVIAN ANDES:
IMPACTS ON GLACIERS AND LAKES:
Faculty: DON RODBELL & DAVID GILLIKIN, Union College
Students: NICHOLAS WEIDHAAS, Union College, ALIA PAYNE, Macalester College, JULIE DANIELS, Northern Illinois University

GEOLOGICAL HAZARDS, CLIMATE CHANGE, AND HUMAN/ECOSYSTEMS RESILIENCE IN THE ISLANDS OF THE FOUR MOUNTAINS, ALASKA
Faculty: KIRSTEN NICOLAYSEN, Whitman College
Students: LYDIA LOOPESKO, Whitman College, ANNE FULTON, Pomona College, THOMAS BARTLETT, Colgate University

CALIBRATING NATURAL BASALTIC LAVA FLOWS WITH LARGE-SCALE LAVA EXPERIMENTS:
Faculty: JEFF KARSON, Syracuse University, RICK HAZLETT, Pomona College
Students: MARY BROMFIELD, Syracuse University, NICHOLAS BROWNE, Pomona College, NELL DAVIS, Williams College, KELSA WARNER, The University of the South, CHRISTOPHER PELLAND, Lafayette College, WILLA ROWEN, Oberlin College

FIRE AND CATASTROPHIC FLOODING, FOURMILE CATCHMENT, FRONT RANGE, COLORADO:
Faculty: DAVID DETHIER, Williams College, WILLIAM B. OUIMET, University of Connecticut, WILLIAM KASTE, The College of William and Mary
Students: GREGORY HARRIS, University of Connecticut, EDWARD ABRAHAMS, The College of William & Mary, CHARLES KAUFMAN, Carleton College, VICTOR MAJOR, Williams College, RACHEL SAMUELS, Washington & Lee University, MANEH KOTIKIAN, Mt. Holyoke College

SOPHOMORE PROJECT: AQUATIC BIOGEOCHEMISTRY: TRACKING POLLUTION IN RIVER SYSTEMS
Faculty: ANOUK VERHEYDEN-GILLIKIN, Union College
Students: CELINA BRIEVA, Mt. Holyoke College, SARA GUTIERREZ, University of California-Berkeley, ALESIA HUNTER, Beloit College, ANNY KELLY SAINVIL, Smith College, LARENZ STOREY, Union College, ANGEL TATE, Oberlin College

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1358987
ExxonMobil Corporation
Short Contributions—Volcanic Hazards and Human Interaction, AK Project

GEOLOGICAL HAZARDS, CLIMATE CHANGE, AND HUMAN/ECOSYSTEMS RESILIENCE IN THE ISLANDS OF THE FOUR MOUNTAINS, ALASKA
KIRSTEN NICOLAYSEN, Whitman College

ARCHAEOLOGICAL SITE STRATIGRAPHY AS A RECORD OF HUMAN RESILIENCE IN THE ISLANDS OF FOUR MOUNTAINS, ALASKA
LYDIA LOOPESKO, Whitman College
Research Advisors: Kirsten Nicolaysen, Whitman College; Virginia Hatfield, University of Kansas

SILICIC LAVAS OF MT. TANA AND THE ISLANDS OF THE FOUR MOUNTAINS, AK
ANNE FULTON, Pomona College
Research Advisor: Jade Star Lackey

GEOCHEMICAL INVESTIGATION OF LITHIC TOOLS AND FLAKES FROM THE ISLANDS OF FOUR MOUNTAINS, AK: DETERMINING SOURCES LOCATIONS AND INFERRING DISTRIBUTION METHODS
TOM BARTLETT, Colgate University
Research Advisor: Martin Wong

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1358987
ExxonMobil Corporation
GEOCHEMICAL INVESTIGATION OF LITHIC TOOLS AND FLAKES FROM THE ISLANDS OF FOUR MOUNTAINS, AK: DETERMINING SOURCES LOCATIONS AND INFERRING DISTRIBUTION METHODS

TOM BARTLETT, Colgate University
Research Advisor: Martin Wong

INTRODUCTION

Stone tool technology was an essential component of life in prehistoric Unangan (Aleut) society of the Aleutian Islands. Hatfield (2006) recorded changes in lithic materials across five Aleutian sites, which date between 8000 and 3000 uncalibrated yBP and pointed to a major decrease in the use of obsidian throughout the prehistory of the Unangax. However, obsidian was coveted because it is easy to flintknapp and results in a fine, sharp edge ideal for projectile points and knives (e.g., Davis and Knecht, 2010; Dumond and Knecht, 2001).

Although obsidian was an ideal material for points and knives, the central and western Aleutians lack any obvious geologic source because rhyolitic obsidian flows are uncommon in oceanic arc settings (Nicolaysen et al., 2012; West et al., 2012). Consequently some recovered tools are made of lower quality, fine-grained lavas or other rare rock types. This raises intriguing questions about where the source(s) of obsidian and other lithic materials were located, how homogeneous or heterogeneous the sources were, and how far the Unangan people traveled or traded to obtain this material, which have important social and resource implications.

The primary objective of this study is to describe the geochemical signatures of stone tools and flakes discovered throughout the Island of the Four Mountains (IFM, Fig. 1) with the ultimate goal of linking these to the geographic distribution of tool-suitable material. Geochemical analysis of stone tools by portable X-ray fluorescence (pXRF) and of worked flakes by electron probe microanalysis (EPMA) is employed as now common in the field of archaeometry (e.g., Millhauser et al., 2011; Reuther et al., 2011). The geochemical analysis of these tools and flakes are compared to the geochemical signatures of four known types of obsidian in the Aleutian Islands (Reuther et al., 2011). We conclude that obsidian was a commonly used material for lithic tools in the IFM and may be derived from multiple sources; these best match the Okmok and Group D obsidian types. Moreover green jasper and fine-grained lavas were also used; evaluating potential local sources is a goal shared with Fulton, 2015 (this volume).

Figure 1. Samples were collected from sites on the flanks of Tana Volcano on Chuginadak Island and Mt. Carlisle. Known regional obsidian sources are from Okmok on Unmak Island and Akutan Island (e.g., Reuther et al., 2011; Nicolaysen et al., 2012). An obsidian type “Group D” is from an unknown location.
METHODS

Geochemical analysis was conducted on twenty flakes of obsidian and thirty-nine lithic tools collected from midden and house pits from sites CR02 (Carlisle), CG02 (Tana), and CG04 (Chuginadak). Non-destructive pXRF analysis was conducted on lithic tools using a Niton XL3t GOLDD+ Series X-Ray Fluorescence spectroscope at Whitman College. The device was operated in soil mode using standard parameters (40 kV and current of 20μA). Repeated measurements of SPHM and LGOB obsidian standards plus powdered GSP-2 USGS standard checked accuracy and precision for the pXRF analysis (Millhauser et al., 2011). The flattest surfaces of tools were wiped with ethanol prior to placing the flat face directly over the detector window. Three replicate measurements were made on the same spot for each tool. If measurements of a particular element for all three standards agreed with the known composition of the standard and had low variance (≤10% difference from mean and from standard value), then we accepted analyses of these elements (Zr, K) in the unknowns as reliable and averaged the measurements. The following elements returned highly reproducible results for standards and unknowns: Zr, Rb, Zn, Fe, Mn, Ti, Ca, K, Ba, Nb, Al, Si. If measured values of the standard were precise but consistently inaccurate with respect to the known values, a calibration curve was created to correct the elemental values of unknown samples.

For electron probe microanalysis (EPMA), seventy flakes (1-2-mm dia.) were impregnated into 1-inch epoxy mounts, polished, and carbon-coated (thickness ~250 Å). Of these, the matrix glass for twenty obsidian flakes was measured at the University of Alaska Fairbanks using a JEOL JXA 8530F electron microprobe. A 15 keV, 10 nA, 10 μm-diameter beam was utilized. Nine distinct analyses on each flake were averaged. Na and Al were analyzed first with time-dependent intensity correction to reduce the effect of volatilization. Major oxides were recorded in wt.% with all Fe reported as FeO. As a measure of a typical analytical uncertainty, a CCNM standard reference material was analyzed repeatedly during the analytical session. The following elements were analyzed: Si, Ti, Al Fe, Mn, Mg, Ca, Na, K, and Cl.

RESULTS

Lithology of flakes

The 70 collected flakes can be divided into four main lithic groups based on their visual appearance. The most common flake lithology (n=22) is a black to gray obsidian with a vitreous luster and rare small (~2 mm) phenocrysts of feldspar and minor titanomagnetite. Eighteen collected obsidian flakes were from House Pit 1 at CG02. Three of these are from level A, seven from level B, two from level C, three from level D, and two are from level E. Three obsidian flakes were recovered in House Pit 17 of CG02. One obsidian flake was found in the south blow out of CG04.

Another common flake lithology (n=14) is fine-grained gray-green jasper with small black inclusions. Twelve of the jasper samples were found in House Pit 1 CG02. Four of the samples were collected from level E, two from level B, one from level C, and five from level A. Additionally, two jasper samples were collected from the West Ravine profile at CG02 (see Loopesko, 2015, this volume, for profile information). One large flake was found at the surface of a sandy devegetated blow out at CG04.

Fifteen of the flakes are likely basaltic andesite with sparse plagioclase phenocrysts up to 1 mm in length in a dark grey to black cryptocrystalline matrix. The rock cleaves in a staircase manner so it is not as smooth as the green grey jasper, yet it still breaks conchoidally. Eleven of the flakes were discovered in House Pit 1, CG02, two from level E, two from level B, one from level C, and five from level A. Three of the samples were found on Chuginadak in House Pit 17, floor number 1. Additionally, one originates from the south blow out of CG04.

Ten flakes are andesitic in composition with abundant plagioclase and some amphibole phenocrysts in a coarsely crystalline groundmass. These flakes range in color from light grey to pink (weathered) and are fairly porous. A subset of nine flakes for analysis was selected from House Pit 1 of CG02. Eight are from level C and one is from level E. Additionally, one flake is from the south beach blow out (CG04).
Geochemistry Results

The EPMA analysis of both the black and gray obsidian flakes shows a rhyolitic composition (72.9–78.4 wt.% SiO₂) with a factor of 2 variation in K₂O/CaO (3.6–6.7 wt.%; Fig. 2). After consideration of analytical error, obsidian flakes show little variation in other major elements (Fig. 3) and are relatively high in K (33,808±986 ppm) and Fe (16,297±1365 ppm) and low in Mn (658±48 ppm).

In total 39 lithic tools were analyzed using the pXRF, 25 of which were identified as obsidian, 9 as basaltic andesite or fine-grained lava, 3 as jasper, 1 argillite, and 1 as flow-banded rhyolite. A comparison of obsidian flakes and tools produce similar Si/Al and different Fe/Mn element ratios (Fig. 4). The flakes have Si/Al that range from 4.7–4.9 ppm (mean=4.8 ppm) whereas the obsidian tools have a slightly broader range of 1.8–4.3 ppm (mean = 3.7 ppm). Flakes have Fe/Mn that range from 13.1–34.7 ppm (mean=25.3 ppm) and tools range from 29.6–42.1 ppm (mean=33.9).

Trace element ratios such as Zr/Nb, Fe/Mn and K/Rb are valuable comparisons because they have the potential for distinguishing among obsidian groups with similar major element compositions. The obsidian tools from CG02, CR02, and CG04 are indistinguishable, within error, for Zr/Nb (Fig. 5). Fe/Mn and K/Rb ratios, however, do show that some of the tools are compositionally distinct.
DISCUSSION

Determining how homogeneous or heterogeneous the nature of materials used by the IFM Unangax to make tools, and which type of lithology was prevalent is central to understanding what role obsidian played in lithic tool production. Based on the major element geochemistry of the obsidian debitage flakes (Figs. 2, 3), the obsidian used for tool production appears to be fairly homogeneous, perhaps suggesting the obsidian is from a single source. However, the major element geochemistry of the obsidian tools appears more variable, especially in Si/Al (Fig. 4), with one cluster overlapping with the flake geochemistry in Si/Al vs. Fe/Mn and one cluster of tools with distinctly lower Si/Al. One possible explanation of these data is that there were two distinct obsidian sources around the IFM, each used for tool production. However, other geochemical ratios suggest little variation in the tool values (Fig. 5). An alternate explanation is that the obsidian flake and tools may have similar Si/Al ratios but pXRF analyses may yield somewhat different Si/Al values than EPMA because pXRF integrates over a larger area and may incorporate phenocrysts as well as the glass matrix.

These data present the opportunity to examine the source region for the obsidian for IFM tools. Individual obsidian flows and glassy welded tuffs have distinct chemical fingerprints (Reuther et al., 2011) and can provide valuable insight into the obsidian origin, distances involved in trade, and the preferred lithic materials of a region (Millhauser et al., 2011). Identified sources of obsidian and/or geochemical groups in the region include the Okmok source, located on Umnak Island ~129 km east of the IFM and the Akutan Island source, ~290 km east of the IFM (Nicolaysen et al., 2012, Fig. 1). Obsidian
Group 14 and Group D have been identified as distinct geochemical groups of obsidian tools, but their source region is still unknown (Glascock et al., 1998).

IFM flakes appear consistent with the Okmok source and Groups I4 and D, while Fe vs. K values appear to match only the Okmok and Group D obsidian due to lower Fe values (Fig. 3). Fe/Mn, Zr/Nb, and K/Rb values for the tools yield similar results to the flake data in that the IFM tools plot close to the Okmok source and Group D (Fig. 5). However, some of the tool data does not appear to match any of the known sources or groups convincingly, opening the possibility that the IFM tools came from a new source or group.

Nicolaysen et al. (2012) found that obsidian was transported from Okmok to Adak Island located 630 km west. The results of this study are consistent with an Okmok source for both obsidian flakes and some tools; it is quite plausible that the IFM Unangax used the closest available source (Okmok ~130 km east of the IFM) even though this would have been an arduous trek by baidarka (Unangan kayak). Moreover the compositional overlap of tools from all three sites (CR02, CG02, CG04; circles 1 and 2 in Fig. 5) shows people in all three villages used the same resources starting ~2990 radiocarbon yBP (Loopesko, 2015, this volume).

The fact that a majority of the tools found were crafted of obsidian suggests either (1) obsidian was the most desirable material for tool production or (2) sampling of the IFM is limited by the size of the excavation sites. Basaltic andesite lavas dominate the volcanic islands of the central Aleutians, including the IFM, though conchoidally-fracturing clasts of dacitic domes and flows have been found in several locations in the IFM (Fulton, 2015, this volume). Thus, obsidian, though originating in only a handful of isolated locations in Kamchatka, Alaska and the Aleutian Islands, appears to have been a highly valuable resource, regardless of harsh circumstances needed to collect it.

ACKNOWLEDGEMENTS

I sincerely thank the following people for helping me throughout this study: Martin Wong (advisor and professor), Kirsten Nicolaysen (advisor), Virginia Hatfield, Dixie West, Pavel Izbekov (EPMA Analysis), Kale Bruner, Breanyn MacInnes, Tina Neal, MitsuRu Okuno, Arkady Savinetsky, Anne Fulton & Lydia Loopesko and William Peck. Additionally, I thank Michael Glascock for SPHM and LGBO obsidian standards and Jeff Speakman for sharing obsidian source values. Captain George Rains, Pilot Dan Leary, and crew of the R/V Maritime Maid provided invaluable support. This work is supported by the National Science Foundation under grants NSF-REU #1358987 and NSF-PLR #1301925 in collaboration with the US Geological Survey and the Alaska Volcano Observatory.

REFERENCES


Fulton, A. (2015). Silicic Lavas of Mt. Tana and the Islands of the Four Mountains, AK, This volume

