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LAKE BUDGET ANALYSIS TO UNDERSTAND GROUNDWATER 

FLOODING OF A SEEPAGE LAKE NEAR MILTON, WI

GRACE GRAHAM, Beloit College
Research Advisor: Susan Swanson

INTRODUCTION

Months following record high precipitation occurring 
in southern Wisconsin, Clear Lake and neighboring 
kettle lakes experienced severe flooding with sustained 
high lake stages persisting through summer 2011. 
Recently, the lake stage has dropped, coinciding with 
severe drought conditions in summer 2012 (Figure 1).  
This project seeks to identify the causes of changing 
Clear Lake storage between 2008 and 2012 and to 
develop a conceptual model of local groundwater flow 
surrounding the lake.  A strengthened understanding 
of local flow systems connected to Clear Lake will lead 
to better anticipation for how the lake may respond 
to intensified precipitation extremes projected for the 
Midwest this century (Vavrus & Van Dorn, 2010).

To identify causes for Clear Lake stage changes over 
the presented timeframe, lake budgets were balanced 
and analyzed for three water years.  Selected years 
correspond to periods of stage rise, maintained high 
stage, and stage fall (Fig. 1).  The water budget for 
Clear Lake is expressed as:

Gw
in

 + P – Gw
out

 – E = ΔS

where Gw
in

 and Gw
out

 are groundwater inflow and 
outflow, P is precipitation, E is evaporation, and ΔS is 
the change in lake storage over one water year.  Surface 
inflow and outflow are not substantial contributors 
to Clear Lake storage, so they are not included in the 
budget. 

Clear Lake is a seepage lake hydrologically connected 
to the surrounding shallow aquifer system. Regional 
models of Rock County groundwater flow display a 
general northward flow beneath Milton, toward the 
Rock River valley (Gaffield et al., 2002).  If Clear Lake 
were mostly influenced by regional groundwater 
flow, similar flooding would have occurred at other 
lakes connected to the regional system; however, no 
regional scale groundwater flooding was experienced.  
The unique flooding response of Clear Lake and 
neighboring kettle lakes therefore suggests that these 
lakes are mostly influenced by local flow systems, 
which act in isolation from regional systems.  Beyond 
basic familiarity with the regional setting of the lake, 
a more detailed, localized model for groundwater 
flow through and around Clear Lake needs to be 
investigated to better understand lake stage response. 
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Figure 1. Clear Lake hydrograph showing stage trends between 
2008 and 2012 and precipitation records for corresponding years 
(NCDC, 2012).
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Aquifer length-to-depth ratio, heterogeneity, and 
surface topography all influence the development of 
local flow systems (Winter, 1976). Whereas regional 
flow systems operate along relatively uninterrupted, 
deep expanses of the aquifer, local flow is generally 
limited to relatively shallow subsurface depths and 
short flowpath distances (Toth, 1963).  This implies that 
the shallow sand and gravel aquifer is most important 
in Clear Lake – groundwater interactions.  The 
hummocky topography, heterogeneous composition, 
and the large length-to-depth ratio of the sand and 
gravel aquifer are factors that act together to support a 
local flow system at this study site. 

The water-table configuration is the most dynamic 
factor that affects groundwater flow near lakes (Winter, 
1991).  While recharge to the deep Cambrian and 
Ordovician aquifers occurs elsewhere in the region 
at defined zones, recharge influencing Clear Lake 
occurs relatively close to the lake. This means that 
precipitation entering the local system may have a 
strong influence on lake behavior.  Different amounts 
of precipitation will support different water table 
elevations, and a dynamic water table will correlate 
with a dynamic lake stage due to changing seepage 
distribution (Winter, 1981).  

The three water years discussed here received 
varying precipitation amounts from 2009 to 2012 
(Fig. 1). Therefore, it is hypothesized that while lake 
stage in Clear Lake is predominantly influenced by 
groundwater flow, precipitation indirectly controls 
the stage by influencing the surrounding water table 
configuration. 

METHODS

This study measured values of the water budget for 
Clear Lake during three water years. Lake volumes 
were calculated for the start and end dates of each 
water year and were used to quantify change in 
lake storage. Volume calculations combined lake 
bathymetry with the start and end lake stage elevations 
of each year. To create a bathymetric map, lakebed 
elevation was measured at approximately 100m 
intervals around the lake from the side of a canoe 
(Figure 2). An extended staff gage was plunged into 
the water to measure lake depth.  An anchored rope 
was used to measure depths greater than four meters. 

A Trimble GPS unit recorded position and elevation 
from which depth measurements were read, and 
the actual elevation of the bed of Clear Lake was 
determined by subtracting depth from the Trimble 
elevation. Surface elevations of Clear Lake shorelines 
were also measured to account for Clear Lake high 
stage. GPS positions of bathymetry measurements 
were imported, hand contoured, and digitized.  
The digitized contour map was converted into a 
triangulated irregular network (TIN), then into a raster 
format using ArcGIS.  

Figure 2. Positions of lake bed and shoreline elevation measured, 
staff gage, and seepage meters. (Image Source: Rock County 
Planning, Economic, and Community Development Agency.)

Lake stage elevations were recorded by a staff gage that 
was installed on the west side of Clear Lake in summer 
2009, after the lake flooded. Stage measurements were 
recorded by the Rock County Health Department 
through 2012, and were checked almost daily during 
the three-week field study of this project in July 2012. 
Trees bordering Clear Lake were drowned by the 2009 
flood, and the elevation of this tree line was used to 
determine the starting lake stage of water year 1. 
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Six lake stages corresponding to the beginning and 
the ending water year dates (Fig. 1) were digitized as 
polygon features, then converted to a raster format.  
To determine the lake volume at different stages, the 
bathymetric raster file was cut by each stage elevation 
raster using the ArcGIS 3D Analyst Cut Fill tool.  The 
difference between end and start volumes for each 
water year were used to calculate the change in storage 
in the water budget analyses. 

The average stage height of each water year was used 
to calculate average lake surface area, which in turn 
was used to develop the evaporation and precipitation 
balance for each water year. Over each defined year, 
maximum and minimum recorded lake stages were 
identified and averaged.  Average lake surface areas 
were calculated using the bathymetry raster and 
ArcGIS 3D Analyst Cut Fill tool with each average 
stage. 

Precipitation and evaporation values were obtained 
from Fort Atkinson monthly records (NCDC, 2012) 
and Department of Agriculture regional annual 
estimates (Weather Bureau, 1959), respectively.  
To calculate precipitation inputs (P), monthly 
precipitation amounts were summed and multiplied 
by the average lake surface area for each water year. 
Regional annual estimates of evaporation (76 cm/
year) were similarly multiplied by the average lake 
surface area for each water year to calculate an 
evaporation output (E). Estimates of P and E were then 
used to determine the net groundwater contribution 
for each water year and investigate the relative role 
of groundwater in Clear Lake flooding using the 
following equation: 

 Gw
in -

 Gw
out

 = ΔS - P + E

where a positive Gw
in

-Gw
out

 value corresponds with 
a net groundwater inflow and a negative Gw

in
-Gw

out
 

value corresponds with a net groundwater outflow for a 
water year.

To estimate the actual distribution of groundwater 
inflow and outflow for water year 3, seepage meters 
were installed at 19 locations around the Clear Lake 

perimeter (Fig. 2). Seepage meters were used to 
determine inflow and outflow rates at discrete points 
around the lake. In order to apply these rates to Clear 
Lake budget calculations, they need to represent lake 
areas. As an initial estimate, this analysis used Theissen 
polygons to interpolate between points. By multiplying 
seepage rates over their representative surface areas, 
volumetric amounts of groundwater inflow and 
outflow were calculated. The seepage groundwater 
volumes provide a check on Gw

in
-Gw

out
 for water year 

3 budget calculations.

RESULTS

The bathymetric raster map of Clear Lake indicates 
that the deepest portion of the lake is located on 
the east side (Figure 3). Clear Lake had a positive 
change in storage during water year 1, a slightly 
negative change in storage during water year 2, and a 
significantly larger negative change in storage during 
water year 3 (Table 1).

The average lake surface areas for water years 1 and 3 
were both lower than the average surface area for water 
year 2 (Table 1). Relative surface areas are especially 
important in evaporation output calculations, because 
the evaporation rate did not vary between years.  
Evaporation was 2.8 x 105 m3, 3.0 x 105 m3, and 2.9 
x 105 m3 during water years 1, 2, and 3, respectively.  
Direct precipitation onto Clear Lake was 3.3 x 105 m3, 
4.4 105 m3, and 2.7 x 105 m3 during water years 1, 2, 
and 3, respectively. 

Clear Lake budgets indicate a significant groundwater 
influence on lake levels.  During water year 1, the net 
flow of groundwater to Clear Lake was 9.0 x 105 m3.  
In the case of water year 2, there was a net outflow of 
groundwater (-1.6 x 105 m3).  Water year 3 had a large 
net outflow of groundwater (-3.9 x 105 m3).

Seepage measurements indicate where inflow and 
outflow occurred around the lake perimeter for water 
year 3.  Figure 3 shows most outflow occurring at the 
northwest, northeast, and east sides of the lake, and 
inflow occurring in the zones between. The highest 
rate of measured inflow occurred on the southeast side 
of Clear Lake.
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Figure 3. Bathymetric map of Clear Lake with the Milton, WI 7.5 minute topographic quadrangle (feet).

Water Year
Start Stage 

(m)

End Stage 

(m)

Average 

Stage (m)

Average SA 

(m
2
)

∆S (m3
)

1 246.11 248.67 247.40 372,258 9.5 x 10
5

2 248.67 248.63 248.72 392,793 -1.6 x 10
4

3 248.19 247.10 247.62 375,763 - 4.1 x 10
5

Table 1. Stage, surface area (SA), and change in lake storage results.

Figure 4. Clear Lake seepage distribution representing magnitude of 
flow rate with size of circle. (Image Source: Rock County Planning, 
Economic, and Community Development Agency.)
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DISCUSSION

The purpose of this study was to characterize the 
causes of Clear Lake stage trends between 2008 and 
2012. Balanced water budget calculations were used to 
solve for the difference between groundwater inflow 
and groundwater outflow for each water year. Results 
reveal a parallel relationship between change in storage 
and net groundwater contribution. During water year 
1, Clear Lake demonstrated a large positive change 
in storage, which corresponds with a large net inflow 
of groundwater. Relatively small negative change 
in lake storage for water year 2 corresponds with a 
relatively small net outflow of groundwater. Water 
year 3 demonstrated a significant decrease in lake 
storage, which corresponds with a large net outflow of 
groundwater. These trends make sense because Clear 
Lake is dominated by groundwater flow. Over the 
study years, groundwater interactions largely outweigh 
precipitation inputs and evaporation outputs for Clear 
Lake. All water year stage trends are thus a result of 
changing groundwater flow patterns. 

To understand why groundwater flow underwent 
a dramatic change in net distribution over the last 
several years, the local flow system surrounding 
Clear Lake needs to be considered. Precipitation that 
becomes groundwater recharge influences the water 
table configuration surrounding Clear Lake. Because 
a higher water table supports a different configuration 
of inflow and outflow than a lower water table, 
precipitation indirectly controls Clear Lake stage. 

At the Clear Lake study site, a high water table within 
the surrounding hills developed after high amounts of 
precipitation in 2008. This recharge created a higher 
water table and a higher volume of inflow into the 
lake during water year 1. High stage was relatively 
constant during water year 2, and is attributed to 
high precipitation in 2010 (Fig. 1). High recharge into 
the local watershed would have helped maintain a 
relatively high water table. Thus, only a small shift in 
seepage distribution would have occurred between 
water year 1 and 2. Drought conditions during 2011-
2012 correspond with a rapid Clear Lake stage drop 
during water year 3. Reduced recharge into the 
local system results in less inflow into the lake and 
substantially increased groundwater outflow. 

A number of potential uncertainties exist within 
these data. The Theissen polygons have limited utility 
when attempting to reconstruct the distribution 
of groundwater inflow and outflow for water year 
3. Inflow and outflow patterns across the center of 
Clear Lake are especially uncertain because seepage 
measurements were not possible in water deeper 
than about 1 m. Seepage data do, however, confirm 
that groundwater flow patterns in Clear Lake are 
complicated. The trading of inflow and outflow around 
Clear Lake confirm that groundwater flow is more 
complicated than a basic flow-through system, at least 
for water year 3, and thus is influenced by a unique 
local flow system that behaves much differently than 
the deeper regional systems of groundwater flow.

CONCLUSIONS

The lag in Clear Lake flooding following peak 
precipitation in 2008 is characteristic of seepage lakes 
due to the slow speed of water infiltration and the time 
required for groundwater inflow to occur. If Clear 
Lake were dominated by surface water inflow and 
outflow, the stage response would have been different; 
there would have been less of a time lag associated 
with initial flooding and subsequent recovery of lake 
water levels. Groundwater moves slowly compared to 
surface water, even within local systems. This explains 
the delayed response following precipitation, and also 
the slow lake draining. For Clear Lake stage height 
to change, the connected local water configuration 
must change. Flooding of Clear Lake therefore has 
prolonged impact for lake residents. The complicated 
distribution of seepage for water year 3 suggests the 
presence of local heterogeneous material in the shallow 
sand and gravel aquifer. However, further research is 
required to better characterize this system. 
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