PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL KECK RESEARCH SYMPOSIUM IN GEOLOGY

April 2013
Pomona College, Claremont, CA

Dr. Robert J. Varga, Editor
Director, Keck Geology Consortium
Pomona College

Dr. Jade Star Lackey
Symposium Convener
Pomona College

Carol Morgan
Keck Geology Consortium Administrative Assistant

Christina Kelly
Symposium Proceedings Layout & Design
Office of Communication & Marketing
Scripps College

Keck Geology Consortium
Geology Department, Pomona College
185 E. 6th St., Claremont, CA 91711
(909) 607-0651, keckgeology@pomona.edu, keckgeology.org

ISSN# 1528-7491

The Consortium Colleges The National Science Foundation ExxonMobil Corporation
Tectonic Evolution of the Chugach-Prince William Terrane: Shumagin Islands and Kenai Peninsula, Alaska
Faculty: John Garver, Union College, Cameron Davidson, Carleton College
Students: Michael Deluca, Union College, Nicolas Roberts, Carleton College, Rose Pettiette, Washington & Lee University, Alexander Short, University of Minnesota-Morris, Carly Roe, Lawrence University.

Lavas and Interbeds of the Powder River Volcanic Field, Northeastern Oregon
Faculty: Nicholas Bader & Kirsten Nicolaysen, Whitman College.
Students: Rebecca Rodd, University of California-Davis, Ricardo Lopez-Maldonado, University of Idaho, Johnny Ray Hinojosa, Williams College, Anna Mudd, The College of Wooster, Luke Ferguson, Pomona College, Michael Baez, California State University-Fullerton.

Biogeochemical Carbon Cycling in Fluvial Systems from Bivalve Shell Geochemistry - Using the Modern to Understand the Past
Faculty: David Gillikin, Union College, David Goodwin, Denison University.
Students: Roxanne Banker, Denison University, Max Davidson, Union College, Gary Linkevich, Vassar College, Hannah Smith, Rensselaer Polytechnic Institute, Nicollette Buckle, Oberlin College, Scott Evans, State University of New York-Geneseo.

Metasomatism and the Tectonics of Santa Catalina Island: Testing New and Old Models
Faculty: Zeb Page, Oberlin College, Emily Walsh, Cornell College.

Geology, Paleoenology and Paleoclimate of the Paleogene Chickaloon Formation, Matanuska Valley, Alaska
Faculty: Chris Williams, Franklin & Marshall College, David Sunderlin, Lafayette College.
CRETACEOUS TO MIocene EVOLUTION OF THE NORTHERN SNAKE RANGE METAMORPHIC
CORE COMPLEX: ASSESSING THE SLIP HISTORY OF THE SNAKE RANGE DECOLLEMENT AND
SPATIAL VARIATIONS IN THE TIMING OF FOOTWALL DEFORMATION, METAMORPHISM, AND
EXHUMATION
Faculty: MARTIN WONG, Colgate University, PHIL GANS, University of California-Santa Barbara.
Students: EVAN MONROE, University of California-Santa Barbara, CASEY PORTELA, Colgate University,
JOSEPH WILCH, The College of Wooster, JORY LERBACK, Franklin & Marshall College, WILLIAM BENDER,
Whitman College, JORDAN ELMIGER, Virginia Polytechnic Institute and State University.

THE ROLE OF GROUNDWATER IN THE FLOODING HISTORY OF CLEAR LAKE, WISCONSIN
Faculty: SUSAN SWANSON, Beloit College, JUSTIN DODD, Northern Illinois University.
Students: NICHOLAS ICKS, Northern Illinois University, GRACE GRAHAM, Beloit College, NOA KARR, Mt.
Holyoke College, CAROLINE LABRIOLA, Colgate University, BARRY CHEW, California State University-San
Bernardino, LEIGH HONOROF, Mt. Holyoke College.

PALEOENVIRONMENTAL RECORDS AND EARLY DIAGENESIS OF MARL LAKE SEDIMENTS: A
CASE STUDY FROM LOUGH CARRA, WESTERN IRELAND
Faculty: ANNA MARTINI, Amherst College, TIM KU, Wesleyan University.
Students: SARAH SHACKLETON, Wesleyan University, LAURA HAYNES, Pomona College, ALYSSA DONOVAN,
Amherst College.

INTERDISCIPLINARY STUDIES IN THE CRITICAL ZONE, BOULDER CREEK CATCHMENT,
FRONT RANGE, COLORADO
Faculty: David Dethier, Williams College, Will Ouimet, U. Connecticut.
Students: CLAUDIA CORONA, Williams College, HANNAH MONDRACH, University of Connecticut,
ANNETTE PATTON, Whitman College, BENJAMIN PURINTON, Wesleyan University, TIMOTHY BOATENG,
Amherst College, CHRISTOPHER HALCSIK, Beloit College.

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1062720
ExxonMobil Corporation
Keck Geology Consortium: Projects 2012-2013
Short Contributions—Matanuska, Alaska Project

GEOLOGY, PALEOECOLOGY AND PALEOClimATE OF THE PALEogene CHICKALOON FORMATION, MATANUSKA VALLEY, ALASKA
Faculty: CHRIS WILLIAMS, Franklin & Marshall College, DAVID SUNDERLIN, Lafayette College.

CLIMATE AND PLANT INTERACTIONS IN AN ANCIENT ALASKAN RAINFOREST
MOLLY REYNOLDS, Franklin and Marshall College
Research Advisor: Christopher Williams

GROWTH RING ANALYSIS OF METASEQUOIA FROM THE NORTHEAST USA AND THE PALEocene/Eocene CHICKALOON FORMATION, ALASKA
JACLYN WHITE, Lafayette College
Research Advisor: David Sunderlin

ZIRCON U-Pb GEOCHRONOLOGY FROM THE PALEocene-EOcene CHICKALOON FORMATION
LORELEI CURTIN, Pomona College
Research Advisor: Robert Gaines

EXAMINING THE PALEoenVIRONMENT OF THE CHICKALOON FORMATION, MATANUSKA VALLEY, ALASKA THROUGH CAMPELOMA AND UNIONOIdA FOSSIL ASSEMBLAGES
TYLER SCHUETZ, Carleton College
Research Advisor: Clint Cowan

USING STABLE ISOTOPE GEOCHEMISTRY TO RECONSTRUCT THE PALEOHYDROLOGY AND PALEOClimATE OF THE PALEocene-EOcene CHICKALOON FORMATION, ALASKA
BRENNAN O’CONNELL, Colorado College
Research Advisor: Henry Fricke

PROVENANCE ANALYSIS OF MEDIAL BASIN CHANNEL SANDS IN THE CHICKALOON FORMATION, MATANUSKA VALLEY, ALASKA
SHAWN A. MOORE, Smith College, Northampton MA
Research Advisor: Bosiljka Glumac

Keck Geology Consortium
Pomona College
185 E. 6th St., Claremont, CA 91711
Keckgeology.org
CLIMATE AND PLANT INTERACTIONS IN AN ANCIENT ALASKAN RAINFOREST

MOLLY REYNOLDS, Franklin and Marshall College
Research Advisor: Christopher Williams

INTRODUCTION

Ecosystem response to projected climate change is uncertain. However, the fossil record can inform us about the nature of ecosystems under past greenhouse climates. The study of the size and shapes of leaves (i.e., leaf physiognomy) is frequently used as an indicator of climate (Royer, 2012). Analyses of leaves in modern forests have indicated correlations between the characteristics of a leaf assemblage and climate that can be applied to paleofloral collections. For example, leaves in climates with low moisture availability tend to be smaller and thicker (Givnish, 1987), whereas teeth on the leaf margin disappear in favor of a smooth margin as mean annual temperature (MAT) increases (Royer, 2012). The latter correlation led to the development of leaf-margin analysis (LMA: Wolfe, 1979; Wilf, 1997), an empirical approach used in determining paleotemperature.

Plant-insect interactions preserved in the fossil record also have implications for paleoclimate, although the relationships are debated. Coley and Aide (1991) showed that herbivory tends to increase as latitude decreases, a pattern that is at least partially explained by the effect of increasing temperature on the metabolic rate of herbivores (Brown et al., 2004). However, a modern forest showed the opposite trend, with less herbivory in lower latitudes (Adams and Zhang, 2009). Other paleofloral assemblages show a positive correlation between increased atmospheric pCO$_2$ and associated temperature rise, and herbivory frequency (Currano et al., 2008; Wappler et al., 2012).

This study focuses on the plant-insect interactions and paleoclimate indicators in a paleofloral assemblage from the late Paleocene-early Eocene Chickaloon Formation, south-central Alaska. Intermittent periods of extreme warming such as the Paleocene-Eocene Thermal Maximum (PETM, ~55 Ma) were superimposed on background global “greenhouse” conditions during this period in Earth's history. In some lower latitude North American plant fossil assemblages, an increase in the number of plant taxa as well as an increase in the frequency of insect herbivory at the PETM have been attributed to the direct and indirect effects of elevated atmospheric CO$_2$ concentrations and temperatures (Currano et al., 2008). Data from higher latitude North American fossil localities is more limited. Sunderlin et al. (2011) collected the first stratigraphic- and age-constrained fossil leaf collection from the Chickaloon Formation and performed the first study of early Eocene plant-leaf interactions at high latitudes.

Surprisingly, the paleoclimatic conditions of the early Eocene Chickaloon are not strikingly different from nearly coeval deposits from which significantly higher leaf damage frequencies are reported. MAT was estimated to be 16.4°C from an early Eocene bed in Currano et al. (2008) compared to 11-14.6°C in Sunderlin et al. (2011). To investigate whether or not low incidences of leaf herbivory are unique to the previously sampled locality in the Chickaloon Formation, I excavated and sampled fossil leaves from a new Chickaloon locality.
METHODS

Geologic Background

The Chickaloon Formation was deposited in fluvial conditions in the Matanuska Valley-Talkeetna Mountains forearc basin in south-central Alaska (Trop et al., 2003). I sampled fossil leaves from a new locality at Coyote Lake, located north of Sutton, Alaska (61.7422°N, 148.8986°W). Coyote Lake is a reclaimed coal mine (the Mrak Mine) that was converted into a public-use area in 1987 (Hulen, 1987). Features of the Coyote Lake outcrop include coal beds, fossil wood, and scattered occurrences of leaf fossils in siltstones. One siltstone layer (“MR,” see Williams & Sunderlin, this volume) contained enough fossil leaves to sample (Fig. 1). Zircons from an ash located above the MR larger were dated to 55.3 ± 0.77 Ma (Curtin, this volume). Ash layers in the Evan Jones locality date the upper section of the Chickaloon to between 53.3 ± 1.5 Ma and 55.8 ± 1.7 Ma, suggesting that the PETM lies within that section (Triplehorn et al., 1984). The stratigraphic relationships of prominent coal beds also suggest that the coyote Coyote Lake outcrop lies stratigraphically downsection from the Evan Jones mine outcrop (Barnes and Payne, 1956). These data suggest that the leaves collected in this study site are late Paleocene or early Eocene in age.

Data Collection

A single horizon of siltstone was quarried for 543 fossil leaves. Per the methods of Currano et al. (2008), every angiosperm preserved with half of the leaf or greater was scored for insect damage. Leaves were scored regardless of the degree of preservation. Damage type (DT) classifications were based on Labandeira et al.’s “Guide to Insect (and Other) Damage Types on Compressed Plant Fossils” (2007). During collection, each fossil analyzed for damage was categorized into Raunkiaer-Webb size categories (megaphyll, mesophyll, notophyll, microphyll, nanophyll, or leptophyll; Raunkiaer, 1936), assigned a morphotype, and photographs were taken. Leaves with evidence of insect damage were transported back to the lab for further study. Currano et al.’s (2008) method of scoring leaves was used because having at least a half leaf makes it easier to assign a morphotype, and therefore the ability to determine morphotype-specific relationships. It also allows statistics on the proportions of morphotypes to be calculated.

Damage was classified as one of six functional feeding groups: (1) external foliage feeding, (2) piercing-and-sucking, (3) galling, (4) leaf-mining, (5) seed predation and (6) oviposition (Labandeira et al., 2007). External foliage feeding is further divided into hole feeding, margin feeding, skeletonization, and surface feeding (Labandeira et al., 2007). Labandeira et al. (2007) assigned a host specificity score to each DT based on patterns of insect feeding in modern forests and in the fossil record. A value of 1 is assigned to the most generalized type of feeding in which unrelated plants are consumed, a value of 3 is specialized feeding on only one or a few related species of plants, and a value of 2 is intermediate specialization (Labandeira et al., 2007).

Analyses

The leaf assemblage was analyzed using three physiognomic techniques: Leaf Margin Analysis (LMA: Wolfe, 1979; Wilf, 1997), Provisional Leaf Margin Analysis (PLMA: Kowalski and Dilcher, 2003), and Leaf Area Analysis (LAA: Wilf et al., 1998). A positive relationship exists between MAT and the proportion of sampled leaf morphotypes with entire margin leaves. Both LMA and PLMA exploit this relationship to empirically estimate paleo-MAT. Likewise, LAA
uses the relationship between leaf area and climatic conditions, specifically precipitation, to predict mean annual precipitation (MAP) from the average leaf area of an assemblage. In general, smaller leaves can better tolerate drought than large leaves (Royer, 2012). One commonly applied multivariate technique, CLAMP (climate leaf analysis multivariate program) (Wolfe et al., 1993), uses the site mean of 31 leaf characteristics to estimate MAT and other variables (Royer, 2012). Royer (2012) and others found that the estimates of MAT and MAP from CLAMP were no better than estimates from LMA and LAA. The statistical accuracy of CLAMP decreases significantly with fewer morphotypes, thus this collection was not a good candidate for CLAMP analysis.

RESULTS

Paleoclimate

Based on LMA and PLMA, MAT estimates from the Coyote Lake assemblage varied between 12.5 and 15.7°C. LMA generated the cooler temperatures (12.5 ± 3.8°C) and PLMA the warmer ones (15.7 ± 4.6°C). MAP, estimated from LAA, was 197.1 cm/yr (137.6-282.2 cm/yr).

Leaf Diversity

The 543 samples from the Coyote Lake quarry yielded 15 discrete dicot morphotypes (Table 1). The large range of error in paleoclimate estimates is at least partially due to the low diversity of the leaf bed. The degree of preservation varied greatly among the samples, but many showed higher-order venation. Previous collections from the Evan Jones mine exposure generally have a greater degree of preservation than the collection described here. *Zizyphoides flabella* was the most commonly observed taxa (23%). In order to compare the morphotype diversity to other Chickaloon assemblages, a rarefaction curve was produced using DiversityAS software (Holland, 2008). The curve (Fig. 2) shows that 543 samples was a reasonable collection size to accurately describe the number of species present, and that it is unlikely that many more species would be found if sampling had continued. Compared to other Chickaloon beds, this collection reached its peak richness faster.

Table 1. Frequency, leaf margin score, and MlnA (mean natural logarithm of leaf area) for each dicot leaf morphotype from the Coyote Lake exposure of the Chickaloon Formation, Alaska. Morphotypes that are not taxonomically defined are given letter names.

<table>
<thead>
<tr>
<th>Morphotype</th>
<th>Number of Specimens</th>
<th>Leaf Margin Score (P)</th>
<th>MlnA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>63</td>
<td>0</td>
<td>8.28</td>
</tr>
<tr>
<td>Grewiopsis auriculaeordatus</td>
<td>86</td>
<td>0</td>
<td>9.03</td>
</tr>
<tr>
<td>Dicotylophyllum richardsoni</td>
<td>54</td>
<td>0</td>
<td>8.22</td>
</tr>
<tr>
<td>Zizyphoides flabella</td>
<td>127</td>
<td>0.5</td>
<td>7.75</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>1</td>
<td>8.04</td>
</tr>
<tr>
<td>Carya antiquorum</td>
<td>28</td>
<td>0</td>
<td>7.83</td>
</tr>
<tr>
<td>Dicotylophyllum alaskana</td>
<td>51</td>
<td>0</td>
<td>9.41</td>
</tr>
<tr>
<td>H</td>
<td>23</td>
<td>0</td>
<td>9.36</td>
</tr>
<tr>
<td>I</td>
<td>14</td>
<td>0</td>
<td>8.60</td>
</tr>
<tr>
<td>J</td>
<td>8</td>
<td>1</td>
<td>7.45</td>
</tr>
<tr>
<td>Joffrea sp.</td>
<td>30</td>
<td>0</td>
<td>8.25</td>
</tr>
<tr>
<td>Aesculus hickeyi</td>
<td>34</td>
<td>0</td>
<td>8.61</td>
</tr>
<tr>
<td>M</td>
<td>13</td>
<td>1</td>
<td>8.29</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>1</td>
<td>6.51</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
<td>1</td>
<td>8.01</td>
</tr>
</tbody>
</table>

P = 0.37 Avg. = 8.24

Figure 2. Rarefaction plant species curves for this collection (red), and two Evan Jones beds (blue, green) (Brannick et al., 2012). Analyzed in DiversityAS software (Holland, 2008, http://www.huntmountainsoftware.com).
Leaf Insect Damage

Of the 543 dicot fossil leaf samples, 29 exhibited at least one form of damage (5.3%). Nearly all (90%) of those were damaged in only one way, with 10% damaged in two ways. Hole feeding was the most common functional feeding group, with a majority of damaged leaves or leaf fragments (n = 15) damaged this way (Fig. 3a,b). Skeletonization was the second most common feeding group observed (10 instances of damage; Fig. 3d). Margin feeding, galling, and mining were also present in rare instances in the collection (n = 3, 2, 1, respectively; Fig.3f,c,e).

DISCUSSION

Paleoclimate

The results of my paleoclimate analyses indicate the Coyote Lake paleoenvironment was warm and wet compared to present day conditions in Alaska. Ash layers date Coyote Lake to slightly older than E3, but the paleoclimate estimates are very similar. The estimated MAT from Coyote Lake is slightly higher but within the range of possible MATs of the Evan Jones locality (Table 2). The fossil beds sampled at both Coyote Lake and Evan Jones are from floodplain lithofacies with meandering channels and overbank deposits (Neff et al., 2011) and contain abundant fossil plant remains consistent with wetland and riparian conditions. With these facts in mind, the PLMA regression (Kowalski and Dilcher, 2003), which is calibrated with modern wetland vegetation assemblages, is probably the more appropriate model for MAT estimation. Therefore, MAT was likely closer to 15.7 °C (± 4.6 °C) for Coyote Lake.

MAP estimates for Coyote Lake indicate a climate with significant rainfall (197.1 cm/yr). This range overlaps with the high end of estimates for younger Chickaloon deposits (Sunderlin et al., 2011), but is much higher than MAP estimates from lower latitude Eocene deposits in North America (Table 2). Interestingly, my MAP estimates are more in line with paleoprecipitation estimates from middle to late Paleocene fossil deposits from the Canadian Arctic (Greenwood et al., 2010) than from lower latitude sites.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Age</th>
<th>Age (Ma)</th>
<th>Damaged (%)</th>
<th>MAT estimate °C</th>
<th>MAP estimate (cm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chickaloon, AK</td>
<td>late Paleocene-early Eocene</td>
<td>55.3</td>
<td>5.34</td>
<td>12.5-15.7</td>
<td>197.1</td>
</tr>
<tr>
<td>Bighorn Basin, WY</td>
<td>~PETM</td>
<td>55</td>
<td>33</td>
<td>19.8</td>
<td>120</td>
</tr>
<tr>
<td>Chickaloon, AK</td>
<td>early Eocene</td>
<td>54.8</td>
<td>7.6</td>
<td>11-14.6</td>
<td>154.6</td>
</tr>
<tr>
<td>(Brannick et al., 2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chickaloon, AK</td>
<td>early Eocene</td>
<td>54.8</td>
<td>9.4</td>
<td>11-14.6</td>
<td>154.6</td>
</tr>
<tr>
<td>(Sunderlin et al., 2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Republic, WA</td>
<td>late early Eocene</td>
<td>49</td>
<td>49.8</td>
<td>13</td>
<td>>100</td>
</tr>
<tr>
<td>Bonanza, UT</td>
<td>early middle Eocene</td>
<td>47.3</td>
<td>19.4</td>
<td>15</td>
<td>~84</td>
</tr>
<tr>
<td>(Royer et al., 2007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green River, CO</td>
<td>middle Eocene</td>
<td>43-47</td>
<td>34*</td>
<td>16-23</td>
<td>~45-86</td>
</tr>
<tr>
<td>(Smith, 2008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florissant, CO</td>
<td>late Eocene</td>
<td>34.1</td>
<td>23*</td>
<td>10.8-17.5</td>
<td>50</td>
</tr>
<tr>
<td>(Smith, 2008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Damage frequency, mean annual temperature (MAT), and mean annual precipitation (MAP) estimates for seven fossil leaf collections from North America. Results from this study are in bold.

* Damage rates from Smith (2008) were calculated as the percent of area damaged out of the total area of all leaves with at least 1 cm² preserved.
Leaf Diversity

The low number of distinct angiosperm morphotypes (n = 15) found in the leaf bed is not unusual for the Chickaloon Formation (Brannick et al., 2012), but is lower than expected for warm temperate forests in general. Species evenness is the relative abundance with which each species is represented in an ecosystem. The asymptotic nature of the rarefaction curve for this collection implies that few additional morphotypes would have been found if sampling had continued (Fig. 2). The most common morphotype in this collection, *Zizyphoides flabella*, was found in all beds in Sunderlin et al. (2011). The Coyote Lake outcrop represents a different microenvironment than the Evan Jones exposure, and therefore the diversity of morphotypes compared to other beds in the Chickaloon may be due to differences in how local vegetation was preserved in the fossil record (Sunderlin et al., 2011).

Insect Damage

Herbivory frequency is positively correlated with both temperature and precipitation, a relationship that is not explained by the comparatively high MAT and MAP of this assemblage (Wilf et al., 2001) (Table 2). Paleocene leaves from Curran et al. (2008) exhibited 15-38% of leaves damaged, which increased to 57% for PETM leaves. A study from central Europe compared leaf diversity and damage frequency of the Messel (47.8 Ma) and Eckfeld (44.3 Ma) deposits (Wappler et al., 2012). The Eckfeld deposit had significantly lower leaf diversity (33 morphotypes) and damage frequency (10.9%) than at Messel (93 morphotypes, 20.7% damaged) (Wappler et al., 2012). In modern subtropical forests in China, it was found that herbivory frequency increased with plant species richness after confounding characteristics were considered (Schuldt et al., 2010). Therefore, these data suggest that neither MAT nor MAP had a strong influence on herbivory frequency at the time of deposition, but rather that the low herbivory is related to the low plant diversity. The low plant diversity may be caused by poor soil nutrition (Wappler et al., 2012) or be related to the dynamic, high disturbance environment of the Chickaloon (Neff et al., 2011).

It has been suggested that low herbivory frequency is related to the light regime at high latitudes. Extreme seasonality may cause lower insect survival rates, and thus lower insect herbivory (Coley and Aide, 1991; Brannick et al., 2012). Due to similarities with other paleofloral collections, it is more likely that the low herbivory in this collection is related to low plant diversity.

The varieties of DTs in five functional feeding groups suggest a diverse population of insect herbivores. The type of damage is indicative of the mouthparts of the insect. Hole feeding, margin feeding, skeletonization, and mining DTs are caused by insects with chewing mouthparts, such as beetles and caterpillars (Barbercheck, 2011). Galls are thought to give the insect better nutrition and a favorable microclimate, and can be caused by a variety of organisms, with gall midges, eriophyid mites, and aphids being the most common culprits (Knor et al., 2013). The highest frequencies of galling occur in arid to semi-arid conditions (Knor et al., 2013); thus, the wet warm temperate climate of the Chickaloon may explain the observed low frequency of galling.

Hole feeding (DT01, DT02) and skeletonization (DT16), which together make up 80% of the instances of damage at Coyote Lake, both have a host specificity score of 1, suggesting that most of the insect herbivores present at the time of deposition were generalists (Labandeira et al., 2007). Hole feeding and margin feeding were the most common feeding groups present in Sunderlin et al. (2011).

CONCLUSIONS

This study focused on comparing a new leaf bed in the Chickaloon to previous studies to explore how lithospatial variation might influence climate and leaf damage. Despite collection in geologically older strata, paleoclimate estimates are similar to previous studies, suggesting a long period of climatic and floral stability despite dynamic climatic conditions at the PETM. Limited herbivory is also consistent with previous studies, but is unusual in the greater picture of the late Paleocene-early Eocene greenhouse climate. Finding the PETM in the Chickaloon could provide better insight into any short-term changes in plant or animal composition. Studies of past greenhouse climates could provide insight into how current ecosystems will
adapt to increasing temperatures at the high latitudes.

REFERENCES

