PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL KECK RESEARCH SYMPOSIUM IN GEOLOGY

April 2013
Pomona College, Claremont, CA

Dr. Robert J. Varga, Editor
Director, Keck Geology Consortium
Pomona College

Dr. Jade Star Lackey
Symposium Convener
Pomona College

Carol Morgan
Keck Geology Consortium Administrative Assistant

Christina Kelly
Symposium Proceedings Layout & Design
Office of Communication & Marketing
Scripps College

Keck Geology Consortium
Geology Department, Pomona College
185 E. 6th St., Claremont, CA 91711
(909) 607-0651, keckgeology@pomona.edu, keckgeology.org

ISSN# 1528-7491

The Consortium Colleges The National Science Foundation ExxonMobil Corporation
2012-2013 PROJECTS

TECTONIC EVOLUTION OF THE CHUGACH-PRINCE WILLIAM TERRANE: SHUMAGIN ISLANDS AND KENAI PENINSULA, ALASKA
Faculty: JOHN GARVER, Union College, CAMERON DAVIDSON, Carleton College
Students: MICHAEL DELUCA, Union College, NICOLAS ROBERTS, Carleton College, ROSE PETTIETTE, Washington & Lee University, ALEXANDER SHORT, University of Minnesota-Morris, CARLY ROE, Lawrence University.

LAVAS AND INTERBEDS OF THE POWDER RIVER VOLCANIC FIELD, NORTHEASTERN OREGON
Faculty: NICHOLAS BADER & KIRSTEN NICOLAYSEN, Whitman College.
Students: REBECCA RODD, University of California-Davis, RICARDO LOPEZ-MALDONADO, University of Idaho, JOHNNY RAY HINOJOSA, Williams College, ANNA MUDD, The College of Wooster, LUKE FERGUSON, Pomona College, MICHAEL BAEZ, California State University-Fullerton.

BIOGEOCHEMICAL CARBON CYCLING IN FLUVIAL SYSTEMS FROM BIVALVE SHELL GEOCHEMISTRY - USING THE MODERN TO UNDERSTAND THE PAST
Faculty: DAVID GILLIKIN, Union College, DAVID GOODWIN, Denison University.
Students: ROXANNE BANKER, Denison University, MAX DAVIDSON, Union College, GARY LINKEVICH, Vassar College, HANNAH SMITH, Rensselaer Polytechnic Institute, NICOLLETTE BUCKLE, Oberlin College, SCOTT EVANS, State University of New York-Geneseo.

METASOMATISM AND THE TECTONICS OF SANTA CATALINA ISLAND: TESTING NEW AND OLD MODELS
Faculty: ZEB PAGE, Oberlin College, EMILY WALSH, Cornell College.
Students: MICHAEL BARTHELMEs, Cornell College, WILLIAM TOWBIN, Oberlin College, ABIGAIL SEYmour, Colorado College, MITCHELL AWALT, Macalester College, FREDY AGUIRRE, Franklin & Marshall College, LAUREN MAGLIOZZI, Smith College.

GEOLOGY, PALEOEKOLOGY AND PALEOClimate OF THE PALEOGene CHICKALoon FORMATION, MATANUSKA VALLEY, ALASKA
Faculty: CHRIS WILLIAMS, Franklin & Marshall College, DAVID SUNDERLIN, Lafayette College.
CRETACEOUS TO MIOCENE EVOLUTION OF THE NORTHERN SNAKE RANGE METAMORPHIC CORE COMPLEX: ASSESSING THE SLIP HISTORY OF THE SNAKE RANGE DECOLLEMENT AND SPATIAL VARIATIONS IN THE TIMING OF FOOTWALL DEFORMATION, METAMORPHISM, AND EXHUMATION
Faculty: MARTIN WONG, Colgate University, PHIL GANS, University of California-Santa Barbara.
Students: EVAN MONROE, University of California-Santa Barbara, CASEY PORTELA, Colgate University,
JOSEPH WILCH, The College of Wooster, JORY LERBACK, Franklin & Marshall College, WILLIAM BENDER,
Whitman College, JORDAN ELMIGER, Virginia Polytechnic Institute and State University.

THE ROLE OF GROUNDWATER IN THE FLOODING HISTORY OF CLEAR LAKE, WISCONSIN
Faculty: SUSAN SWANSON, Beloit College, JUSTIN DODD, Northern Illinois University.
Students: NICHOLAS ICKS, Northern Illinois University, GRACE GRAHAM, Beloit College, NOA KARR, Mt.
Holyoke College, CAROLINE LABRIOLA, Colgate University, BARRY CHEW, California State University-San
Bernardino, LEIGH HONOROF, Mt. Holyoke College.

PALEOENVIRONMENTAL RECORDS AND EARLY DIAGENESIS OF MARL LAKE SEDIMENTS: A CASE STUDY FROM LOUGH CARRA, WESTERN IRELAND
Faculty: ANNA MARTINI, Amherst College, TIM KU, Wesleyan University.
Students: SARAH SHACKLETON, Wesleyan University, LAURA HAYNES, Pomona College, ALYSSA DONOVAN,
Amherst College.

INTERDISCIPLINARY STUDIES IN THE CRITICAL ZONE, BOULDER CREEK CATCHMENT, FRONT RANGE, COLORADO
Faculty: David Dethier, Williams College, Will Ouimet, U. Connecticut.
Students: CLAUDIA CORONA, Williams College, HANNAH MONDRACH, University of Connecticut,
ANNETTE PATTON, Whitman College, BENJAMIN PURINTON, Wesleyan University, TIMOTHY BOATENG,
Amherst College, CHRISTOPHER HALCSIK, Beloit College.

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1062720
ExxonMobil Corporation
PALEOENVIRONMENTAL RECORDS AND EARLY DIAGENESIS OF MARL LAKE SEDIMENTS: A CASE STUDY FROM LOUGH CARRA, WESTERN IRELAND
Faculty: ANNA MARTINI, Amherst College, TIM KU, Wesleyan University.

PORE WATER AND SEDIMENT CARBON ISOTOPE GEOCHEMISTRY OF MARL LAKE SEDIMENTS, LOUGH CARRA, IRELAND
SARAH SHACKLETON, Wesleyan University
Research Advisor: Timothy Ku

LATE HOLOCENE CLIMATE VARIABILITY FROM LOUGH CARRA, COUNTY MAYO, WESTERN IRELAND
LAURA HAYNES, Pomona College
Research Advisor: Dr. Robert Gaines

PHOSPHATE AND TRACE METAL RECORDS FROM AN IRISH MARL LAKE: TRACING ANTHROPOGENIC INFLUENCE OVER SHORT AND LONG TIME SCALES
ALYSSA DONOVAN, Amherst College
Research Advisor: Anna Martini
PALEOENVIRONMENTAL RECORDS AND EARLY DIAGENESIS OF MARL LAKE SEDIMENTS: A CASE STUDY FROM LOUGH CARRA, WESTERN IRELAND

ANNA M. MARTINI, Amherst College
TIMOTHY C.W. KU, Wesleyan University

INTRODUCTION

Carbonate sediments from lacustrine environments have provided long term records of climate and land-use changes through the use of geochemical and biological proxies such as stable isotopic data, trace metal concentrations, faunal assemblages and pollen analyses. More specifically, the oxygen isotope composition of carbonate minerals precipitated via biological mediation is assumed to be in near isotopic equilibrium with δ^{18}O of lake water and the δ^{13}C of the DIC pool (Drummond et al., 1995). In lakes with good drainage (~relatively short residence times) the δ^{18}O marl values reflect the isotopic composition of the meteoric precipitation, which is directly related to mean annual temperature (Dansgaard, 1964). The marl δ^{13}C values reflect lake water δ^{13}C$_{DIC}$ values, which, in turn, are controlled by lake productivity, inflowing water δ^{13}C$_{DIC}$ values, and exchange with the atmosphere δ^{13}C$_{CO_2}$ (Leng et al. 2004). Sediment concentrations of Hg, Pb, Cu, Cr, and Zn record anthropogenic activities and preserved invertebrate and pollen assemblages reveal vegetation and water quality changes (King and Champ, 2000; Donohue et al., 2010). Phosphate concentration also record anthropogenic activity in the watershed, and increasing concentrations are a good signal of eutrophication. Overall, carbonate lake deposits can provide excellent long-term paleoenvironmental records, but careful interpretations of these proxies is necessary since post-depositional processes may significantly alter the signal (e.g. Andrews et al, 2004).

Lough Carra provides an excellent opportunity to examine long-term climatic (Holmes et al., 2010) and land use changes (Donohue et al., 2010) in an area with an extensive history of human inhabitation. Sediment ages from surrounding peat and lakes have been determined by pollen assemblages, 14C-dated stratigraphies, known tephra layers derived from Icelandic ash falls, and by traditional 210Pb, 14C, and U-Th dating techniques on organic matter, carbonates, or bulk sediment (O'Connell et al., 1987; Swindles et al., 2011). Previous efforts to date sediments by 210Pb from the shallow areas of lake were unsuccessful due to likely reworking of sediment though O’Reilly et al. (2011) was successful in obtaining sedimentation rates in Lough Carra’s deeper basins (Keck 2003 Symposium). At this stage, preliminary dates are based on bulk density profiles, counting of laminations, and 14C dates from plant and carbonate shells.

RESEARCH OBJECTIVES AND METHODOLOGY

Lough Carra is a shallow marl lake in County Mayo, Western Ireland, situated on Carboniferous limestone bedrock (Fig. 1). Its watershed encompasses ~104 km2 and is underlain nearly entirely by the same Carboniferous Limestone bedrock with variable amounts of glacial till on top. It is fed by two principle rivers, the River Paltry and the River Annies, and drains into Lough Mask, to the south. Land use in the low-relief terrain surrounding the lake is predominantly grass production and sheep and cattle farming (King and Champ 2000).

The 2012 Keck field team included 2 professors, 3 Keck students as well as 2 undergraduate research assistants from Amherst College and 1 from Wesleyan University funded by university support. Water column measurements and water samples were collected from all sites. Short cores were collected using a gravity-
coring device from various deep-water sites across the lake. These below wave base sites are far more likely to record annual changes within the basin. During the previous Keck project to Lough Carra in 2003, only push cores from shallow sites were possible to collect. These have a distinct disadvantage as the fine-grained marl is easily resuspended in “white out” events throughout the year. We did collect a repeat core from one of these locations on this trip for comparison (LC 16).

For the Keck 2012 study group the 3 principle research objectives became the three student projects. The first, examining early diagenesis, grew from the previous sample trip—namely a shallow push core where $\delta^{13}C_{\text{CaCO}_3}$ values consistently increased from -0.9‰ at the surface to +1.3‰ at a depth of 1.86m (Huang, 2003). The $\delta^{13}C$ value of autochthonous lacustrine carbonate reflects the carbon isotopic composition of dissolved inorganic carbon (DIC), which is controlled by three primary processes: input C sources, atmosphere exchange, and primary productivity. In many lakes, primary productivity largely determines the sedimentary $\delta^{13}C_{\text{CaCO}_3}$ values because photosynthesis by aquatic plants preferentially removes ^{12}C from the DIC pool; thus, high primary productivity rates result in more positive $\delta^{13}C_{\text{CaCO}_3}$ values (e.g. Leng and Marshall, 2004). If the nearly 2 meters of sediment only represents the past 100+ years, the changing atmospheric $\delta^{13}C_{\text{CO}_2}$ due to the burning of fossil fuels may account for much of this isotopic shift. This would imply, however, very high sedimentation rates, as well as less reworking of the sediment at this shallow site than we had suspected. That the continuous increasing $\delta^{13}C_{\text{CaCO}_3}$ trend with depth is present despite significant sediment reworking suggests a rapid diagenetic process if primary productivity or the lake $\delta^{13}C_{\text{DIC}}$ has not shifted over time. In the study by Diefendorf and others (2008; results from Keck 2002 project) the $\delta^{3}C_{\text{CaCO}_3}$, $\delta^{13}C_{\text{org}}$, and $\delta^{13}C$ record from nearby Lough Inchiquin was examined. Here the interpretation found large (>10‰) positive down core changes in both $\delta^{13}C_{\text{CaCO}_3}$ and $\delta^{13}C_{\text{org}}$ from 16.8 to 8.5 kyr B.P. The authors interpreted this trend as resulting from changing input carbon sources as the regional landscape transitioned from barren limestone just after glaciation to a forested ecosystem. The same cannot be true for Lough Carra, as the sediments are much younger (upper parts contained ^{210}Pb and rough extrapolation of deep water sedimentation rates would give an age of ~1500 years at 1.8m depth), and landscape vegetation has not changed dramatically over this time period. While variations in primary productivity may cause the shift in $\delta^{13}C_{\text{CaCO}_3}$ diagenetic processes linked to microbial metabolisms (both sulfate reduction and methanogenesis) leading to rapid carbonate recrystallization (dissolution – precipitation)
may also be important. To examine this possibility, pore water samples were collected for methane and DIC δ13C values and the role of diagenesis in determining δ13C\textsubscript{CaCO\textsubscript{3}}, δ13C\textsubscript{org}, and δ13C values was examined by Sarah Shackleton of Wesleyan University.

The second objective was to see if the Lough Carra marl recorded the land use changes and airborne anthropogenic pollution over the last few hundred years. For the most recent (~25 years) we will be examining the rate of nutrient loading to the lake, and projecting these changes into the future. Like many shallow marl lakes, Lough Carra is extremely susceptible to eutrophication, mainly in the form of nitrates and phosphates entering the catchment via agriculture and cattle ranching (King and Champ, 2000). Over the course of 30 years surveillance, the lake has gone from oligotrophic to mesotrophic classification (Donohue et al., 2010). To study the cultural eutrophication and wider anthropogenic effects in Lough Carra, Alyssa Donovan of Amherst College, measured sedimentary Hg, phosphorus pools, and carbonate associated metals.

The third objective was to examine the long-term paleoclimate and paleoproductivity record of Lough Carra. In 2012, we obtained an 8 meter sediment core containing well-preserved laminations (Fig. 2b). Laura Haynes of Pomona College examined the sedimentology, age-depth model (14C), sediment chemistry (CHNS), δ13C\textsubscript{CaCO\textsubscript{3}}, and δ18O\textsubscript{CaCO\textsubscript{3}} of this core (Fig. 2c).

STUDENT PROJECTS

Laura Haynes (Pomona College) *The Paleoclimate Record of Lough Carra*: Using δ13C and δ18O of carbonate marl sediments from the ~8m core taken from the south basin of Lough Carra, a record of climate and productivity changes for the region have been described. A fascinating transition from massive, unlaminated gray marl occurs at ~1.5 m, wherein the rest of the core has distinct laminations. This change occurs during late 1700 to 1900, when population, farming, livestock as well as the industrial revolution all occurred. Accurate dating of the core (14C, 210Pb, 137Cs, lamination examinations) is critical for close examination of some of these stratigraphic transitions.

Sarah Shackleton (Wesleyan University) *Carbonate Diagenesis of Marl Lake Sediments*. Lake water, pore water and sediment incubation measurements (δ13C\textsubscript{DIC}, Ca2+/Cl, DIC, P\textsubscript{ch}, δ13C\textsubscript{CH\textsubscript{4}}) provide ways to evaluate early organic matter decomposition pathways and carbonate recrystallization processes that influence δ13C\textsubscript{CaCO\textsubscript{3}} and δ13C\textsubscript{org} values in Lough Carra sediments. Methanogenesis was found to be a key process that determines pore water δ3C\textsubscript{DIC} and carbon isotope mass balance modeling helps quantify the significance of this process in determining sedimentary δ13C\textsubscript{CaCO\textsubscript{3}}. Processes that explain upcore trends of decreasing δ13C\textsubscript{CaCO\textsubscript{3}} and δ13C\textsubscript{org} and increasing δδ13C\textsubscript{carb-org} are also examined.

Alyssa Donovan (Amherst College) *Metal and Nutrient Loading in Lough Carra*. Carbonate chemistry has been used to document both land-use changes (Fe:Ca ratios), mercury deposition (both as a global containment and use as a secondary timeline for dating cores), calcite recrystallization, and eutrophication (total phosphorus). As in the stratigraphy of the long core, the interval from 1700–1900 A.D. is strongly associated with highly variable metal concentration, and spikes in Fe:Ca ratios correlate with other changes in the lamination patterns (thickness and color).

ACKNOWLEDGEMENTS

This study was co-funded, by both Keck and the Axel Schupf Faculty Research Award Program available from Amherst College. We would like to thank Karen Molloy, Pat and Peter, all from the National University of Ireland, Galway, for logistics, superb field assistance and for storing half of our core. We would also thank Pat and Peter of Loughbawn B&B for their hospitality, good humor and kindness. We also thank Ariela Knight, Mark Hellmer, and Eric Steinbrook for field and laboratory assistance.

REFERENCES

