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INTRODUCTION

Southern Alaska has a long history of subduction, 

accretion, and coastwise transport of terranes (Coney 

et al., 1980; Monger et al., 1982; Plafker et al., 1994). 

The Chugach-Prince William (CPW) terrane is about 

2200 km long and extends through much of southern 

Alaska (Plafker et al., 1994) (Fig. 1A). The inboard 

Chugach terrane can be divided into two parts, a 

mélange and sedimentary units that are Permian to 

Early Cretaceous in age and a turbidite sequence that 

is from the Upper Cretaceous (Plafker et al., 1994). 

In the Prince William Sound area, the outboard 

Prince William terrane is comprised of Paleocene to 

Eocene turbidites and associated basaltic rocks of the 

Orca Group (Davidson and Garver, 2017), and the 

turbidites of the inboard Chugach terrane are known 

as the Valdez Group. The turbidites are intruded by 

the Sanak-Baranof Belt (SBB), a group of 63-47 Ma 

plutons that are progressively younger to the east. 

The Border Ranges fault system marks the northern 

boundary of the CPW terrane, separating the Chugach 

terrane from the Wrangellia composite terrane and 

the Contact fault separates the Chugach and Prince 

William terrane (Fig. 1; Plafker et al., 1994).

There are three ophiolite sequences in the Orca Group: 

Knight Island (KI), Resurrection Peninsula (RP), 

and Glacier Island (GI) (Fig. 1B). The KI ophiolite 

contains a sequence of massive pillow basalts, sheeted 

dikes, and a minor amount of ultramafic rocks (Tysdal 
et al, 1977; Nelson and Nelson, 1992; Crowe et al., 

1992). The RP ophiolite is a typical ophiolite sequence 

and has interbedded Paleocene turbidites (Davidson 

and Garver, 2017). Paleomagnetic data gathered 

from the RP ophiolite indicated a mean depositional 

paleolatitude of 54° ± 7° which implies 13° ± 9° of 

poleward displacement (Bol et al., 1992). These data 

suggest that the RP ophiolite was translated northward 

to its current position after being formed in the Pacific 
Northwest, and thus the CPW terrane may have been 

originally located at 48-49° north and at 50 Ma was 

transferred 1100 km to the north by strike-slip faulting 

(Cowan, 2003). However, an opposing hypothesis 

suggests that the terrane has not experienced 

significant displacement and formed in Alaska due to 
a now-subducted Resurrection plate (Haeussler et al., 

2003).

KI and RP ophiolites have traditionally been assumed 

to be oceanic crust that was tectonically emplaced 

into the CPW terrane (Bol et al., 1992; Lytwyn et 

al., 1997). However, a more recent study suggests a 

hypothesis that the ophiolites originated in an upper 

plate setting and formed due to transtension (Davidson 

and Garver, 2017). Previous workers have used 

discriminant diagrams to identify the volcanic rocks 

of KI ophiolite and RP ophiolite as mid-ocean ridge 

basalts (Lytwyn et al., 1997; Miner, 2012). This project 

presents new geochemical and geochronological data 

from the GI ophiolite to determine its age and tectonic 

setting. The purpose of this study is to compare the 

data from GI with the data from KI and RP, and the 

comparison of the geochemical data will allow for 

a greater understanding of the tectonic setting of 

southern Alaska.

GEOLOGIC SETTING AND 

OUTCROP DESCRIPTION

The Orca Group is composed of turbidites that are 
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interbedded with pillow basalt and sheet flows, and 
is intruded by mafic dikes. The group is Paleocene 
to Eocene in age and is primarily exposed in Prince 

William Sound (Wilson and Hults, 2012).  The Orca 

Group is also intruded by the SBB plutons and the 

Eshamy Suite plutons (Fig. 1). The Orca Group is 

variably metamorphosed from laumontite to lower-

greenschist facies with metamorphic grade increasing 

to the north and northwest (Wilson and Hults, 2012). 

The GI sequence in northern Prince William Sound 

is a volcanic sequence that has been described as 

an ophiolite (Nelson et al., 1999, Crowe et al.1992; 

Bradley et al., 2003). The sequence contains 

volcaniclastic rocks, pillow basalts with some minor 

massive basalt flows, and sheeted dikes (Wilson 
and Hults, 2012). Geologic maps of GI indicate the 

majority of the island is composed of pillow basalts, 

but the southern part of the island has a sheeted dike 

complex (Wilson and Hults, 2012). 

The sheeted dikes on Glacier Island range from 10 

cm to 1.5 m thick (Fig. 2A) and many of the dikes 

have visible chill margins. One dike, sample GI18-

07B, intrudes a sandstone unit (Fig. 2C), that allows 

the age of the dike to be constrained by dating zircons 

in the sandstone (see below). Some of the dikes and 

pillows have large (~4 mm) phenocrysts of plagioclase 

and all of the dikes have some amount of fracturing. 

The pillow basalts on Glacier Island have pillows 

that range in size from 0.25 m to 1.0 m in diameter 

(Fig. 2B) and some of the pillows have large vesicles. 

Some of the pillow basalts are also brecciated and 

disorganized likely due to the magma instantly hitting 

the water.

ANALYTICAL METHODS

Fourteen samples from Glacier Island and three 

samples of mafic volcanic rocks interbedded with or 
intruding turbidites of the Orca Group were collected 

for geochemical analysis (Fig. 1). The samples were 

sent to Hamilton College where major element 

geochemical data were determined using XRF. The 

glass beads were mounted and polished, and were 

then sent to Rensselaer Polytechnic Institute for trace 

element data collected using LA-ICP-MS. Zircons 

extracted from a sandstone sample from Glacier Island 

intruded by a mafic dike were analyzed for U/Pb at the 
Laserchron Lab at the University of Arizona.

Figure 1: A) Geologic map of the CPW terrane (modified from Bradley et al., 2003). Box shows approximate location of Fig. 1B. B) 
Geologic Map of Glacier Island and Unakwik Inlet (modified from Wilson et al., 2015).
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U/PB RESULTS

The maximum depositional age (MDA) of the 

sandstone sample (GI18-07A) is 56.8 ± 0.6 Ma. This 

number was determined using U/Pb analysis of 110 
zircon grains and calculating the weighted mean of the 

three youngest zircon grains (Davidson and Garver, 

2017). GI18-07A is cut by a mafic dike assumed to 
be related to the GI volcanics. The dike intruding the 

sandstone suggests that volcanism and deposition of 

the turbidites in the Orca Group occurred together. 

MDA’s of the surrounding Orca Group turbidites 

have a similar age to GI-07A (Malik et al., this issue; 

Fisher et al., 2019). The MDA indicates that the dike 

that intruded the area of the detrital sample must be 

younger than (or equal to) 56.8 ± 0.6 Ma. These data 

suggest that the GI, RP, and KI ophiolites are the same 

age (cf. Davidson and Garver, 2017).

GEOCHEMICAL RESULTS

All of the mafic volcanic rocks from Glacier Island 

and northern Prince William Sound from this study 

plot as basalts and basaltic andesites (Fig. 3A) and 

are tholeiitic (Fig. 3B). Basalts with a tholeiitic 

composition are consistent with a mid-ocean ridge 

origin. On various discrimination diagrams, the GI 

rocks plot as ocean floor basalts and appear to be most 
closely aligned with N-MORB (Fig. 4). 

Figure 5 shows the rare earth element (REE) 

abundances from this study and the KI and RP 

ophiolites. Overall, the majority of the samples from 

this study have a fairly flat REE pattern indicative of 
a depleted mantle source, with some samples from 

Glacier Island showing depletion in the LREE’s 

typical of N-MORB.

 Figure 3: Rock classification diagrams for the Glacier Island 
ophiolite. A) TAS Diagram (LeBas et al.,1986). B) AFM Diagram 
(Irvine and Baragar, 1971). Symbols are the same as those shown 
in Figure 1.

Figure 2: Field photographs 
of mafic volcanic rocks of the 
Glacier Island ophiolite. A) 
Sheeted dike complex (sample 
location GI18-01). B) Pillow 
basalts (sample location GI18-
05. C) Mafic dike cutting Orca 
Group turbidites (sample 
location GI18-07).
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Thin sections of the four pillow basalt samples from 

GI are mostly fine-grained and dominated by altered 
pyroxene and plagioclase. The plagioclase phenocrysts 

tend to be euhedral and elongated. Three of the thin 

sections contain amygdules. Overall, significant 
alteration of the groundmass is noted. This alteration is 

likely due to the fact that the pillows came in contact 

with seawater. The alteration seen in thin section is an 

alternative explanation for the depletion in the LREEs 

seen in some samples (Fig. 5).

Thin sections for the nine dikes range from fine-
grained equigranular to coarse-grained porphyritic 

and are dominated by plagioclase and pyroxenes. The 

majority of the plagioclase grains are elongated and 

euhedral. Plagioclase grains exhibit slight to moderate 

dusty alteration. Pyroxenes are subhedral to anhedral. 

The pyroxenes range from unaltered to moderately 
altered. Variable amounts of opaque minerals are 

present in each of the thin sections. 

DISCUSSION

The detrital zircon results from Glacier Island indicate 

that the GI ophiolite is ~57 Ma (or younger), and 

therefore approximately the same age as the RP 

ophiolite (Bradley, et al., 2003; Davidson and Garver, 

2017). The RP ophiolite was directly dated at 57 ± 

1 Ma by Nelson et al. (1989) using a plagiogranite 

assumed to be genetically related to the ophiolite, 

and Davidson and Garver (2017) dated a sandstone 

unit interbedded with pillow basalts at the top of the 

ophiolite that yielded an MDA of 57 Ma. The KI 

ophiolite has not been dated but it is inferred that the 

ophiolite is the same age as the RP and GI ophiolites 

because all three are interbedded with the Orca Group 

turbidites, occur along a strike in the same belt, 

and are composed of similar rock types (Figs. 4&5; 

Bradley, et al., 2003; Davidson and Garver, 2017).

Geochemical data show that the three ophiolites likely 

originated from the same source. Most of the KI 

volcanic rock samples are tholeiitic basalts (Lytwyn 

et al., 1997; Miner, 2012) and the mafic volcanic 
rocks from GI are also tholeiitic basalts (Fig. 3B). 

Major and trace element geochemistry from GI are 

similar to KI and RP basalts and suggest that the rocks 

originated from a complicated ridge setting (Lytwyn et 

al., 1997; Miner, 2012) where melts from a spreading 

Figure 4: Discrimination diagrams for the Glacier Island ophiolite. 
Symbols are the same as those shown in Figure 1. A) Ti-V after 
Shervais (1982). Data from Lytwyn et al. (1997) shown as fields 
for the Resurrection ophiolite (green) and Knight Island ophiolite 
(blue). B) Th-Nb proxy from Pearce (2008). N-MORB, E-MORB, 
and OIB compositions from Sun and McDonough (1989). Blue 
arrows show the direction MORB compositions change when 
mixing with melts derived from a mantle wedge infiltrated by 
subduction-related fluids and melts. C) Ti-Nb proxy from Pearce 
(2008) that shows the depth/temperature dependence of mantle 
melts.  The data from Glacier Island suggest shallow melting of 
an N-MORB source.

Figure 5: Rare earth element abundances for the Glacier 
Island, Knight Island, and Resurrection ophiolites normalized to 
chondrites after Sun and McDonough (1989). Symbols and shaded 
regions are the same as those shown in Figures 1 & 4.
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CONCLUSION

Based on geochemical data and detrital zircon ages, 

the Glacier Island, Resurrection Peninsula, and Knight 

Island ophiolite sequences originated from the same 

depleted mantle source and within a short period time 

at ~57 Ma. The RP ophiolite has been shown to have 

translated northward by 13° ± 9° since it formed (Bol 

et al., 1992). These data suggest that the RP ophiolite, 

and therefore the GI and KI ophiolites and associated 

Orca Group turbidites in Prince Willam Sound were 

translated northward to their current position after 
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