PROCEEDINGS OF THE TWENTY-SEVENTH
ANNUAL KECK RESEARCH SYMPOSIUM IN
GEOLOGY

April 2014
Mt. Holyoke College, South Hadley, MA

Dr. Robert J. Varga, Editor
Director, Keck Geology Consortium
Pomona College

Dr. Michelle Markley
Symposium Convener
Mt. Holyoke College

Carol Morgan
Keck Geology Consortium Administrative Assistant

Christina Kelly
Symposium Proceedings Layout & Design
Office of Communication & Marketing
Scripps College

Keck Geology Consortium
Geology Department, Pomona College
185 E. 6th St., Claremont, CA 91711
(909) 607-0651, keckgeology@pomona.edu, keckgeology.org

ISSN# 1528-7491

The Consortium Colleges The National Science Foundation ExxonMobil Corporation
KECK GEOLOGY CONSORTIUM
PROCEEDINGS OF THE TWENTY-SEVENTH ANNUAL KECK RESEARCH SYMPOSIUM IN GEOLOGY
ISSN# 1528-7491

April 2014

Robert J. Varga
Editor and Keck Director
Pomona College

Keck Geology Consortium
Pomona College
185 E 6th St., Claremont, CA
91711

Christina Kelly
Proceedings Layout & Design
Scripps College

Keck Geology Consortium Member Institutions:
Amherst College, Beloit College, Carleton College, Colgate University, The College of Wooster,
The Colorado College, Franklin & Marshall College, Macalester College, Mt Holyoke College,
Oberlin College, Pomona College, Smith College, Trinity University, Union College,
Washington & Lee University, Wesleyan University, Whitman College, Williams College

2013-2014 PROJECTS

MAGNETIC AND GEOCHEMICAL CHARACTERIZATION OF IN SITU OBSIDIAN, NEW MEXICO:
Faculty: ROB STERNBERG, Franklin & Marshall College, JOSHUA FEINBERG, Univ. Minnesota, STEVEN SHACKLEY, Univ. California, Berkeley, ANASTASIA STEFFEN, Valles Caldera Trust, and Dept. of Anthropology, University of New Mexico
Students: ALEXANDRA FREEMAN, Colorado College, ANDREW GREGOVICH, Colorado College, CAROLINE HACKETT, Smith College, MICHAEL HARRISON, California State Univ.-Chico, MICHAELA KIM, Mt. Holyoke College, ZACHARY OSBORNE, St. Norbert College, AUDRUANNA POLLEN, Occidental College, MARGO REGIER, Beloit College, KAREN ROTH, Washington & Lee University

TECTONIC EVOLUTION OF THE FLYSCH OF THE CHUGACH TERRANE ON BARANOF ISLAND, ALASKA:
Faculty: JOHN GARVER, Union College, CAMERON DAVIDSON, Carleton College
Students: BRIAN FRETT, Carleton College, KATE KAMINSKI, Union College, BRIANNA RICK, Carleton College, MEGHAN RIEHL, Union College, CLAUDIA ROIG, Univ. of Puerto Rico, Mayagüez Campus, ADRIAN WACKETT, Trinity University,

EVALUATING EXTREME WEATHER RESPONSE IN CONNECTICUT RIVER FLOODPLAIN ENVIRONMENT:
Faculty: ROBERT NEWTON, Smith College, ANNA MARTINI, Amherst College, JON WOODRUFF, Univ. Massachusetts, Amherst, BRIAN YELLEN, University of Massachusetts
Students: LUCY ANDREWS, Macalester College, AMY DELBECQ, Beloit College, SAMANTHA DOW, Univ. Connecticut, CATHERINE DUNN, Oberlin College, WESLEY JOHNSON, Univ. Massachusetts, RACHEL JOHNSON, Carleton College, SCOTT KUGEL, The College of Wooster, AIDA OROZCO, Amherst College, JULIA SEIDENSTEIN, Lafayette College

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1062720
ExxonMobil Corporation
A GEOBIOLOGICAL APPROACH TO UNDERSTANDING DOLOMITE FORMATION AT DEEP SPRINGS LAKE, CA
Faculty: DAVID JONES, Amherst College, JASON TOR, Hampshire College,
Students: KYRA BRisson, Hampshire College, KYLE METCALFE, Pomona College, MICHELLE PARDIS, Williams College, CECILIA PESSOA, Amherst College, HANNAH PLON, Wesleyan Univ., KERRY STREIFF, Whitman College

POTENTIAL EFFECTS OF WATER-LEVEL CHANGES ON ISLAND ECOSYSTEMS: A GIS SPATIOTEMPORAL ANALYSIS OF SHORELINE CONFIGURATION
Faculty: KIM DIVER, Wesleyan Univ.
Students: RYAN EDGLEY, California State Polytechnic University-Pomona, EMILIE SINKLER, Wesleyan University

PĀHOEHOE LAVA ON MARS AND THE EARTH: A COMPARATIVE STUDY OF INFLATED AND DISRUPTED FLOWS
Faculty: ANDREW DE WET, Franklin & Marshall College, CHRIS HAMILTON. Univ. Maryland, JACOB BLEACHER, NASA, GSFC, BRENT GARRY, NASA-GSFC
Students: SUSAN KONKOL, Univ. Nevada-Reno, JESSICA MCHALE, Mt. Holyoke College, RYAN SAMUELS, Franklin & Marshall College, MEGAN SWITZER, Colgate University, HESTER VON MEERSCHEIDT, Boise State University, CHARLES WISE, Vassar College

THE GEOMORPHIC FOOTPRINT OF MEGATHRUST EARTHQUAKES: A FIELD INVESTIGATION OF CONVERGENT MARGIN MORPHOTECTONICS, NICOYA PENINSULA, COSTA RICA
Faculty: JEFF MARSHALL, Cal Poly Pomona, TOM GARDNER, Trinity University, MARINO PROTTI, OVSICORI-UNA, SHAWN MORRISH, Cal Poly Pomona
Students: RICHARD ALFARO-DIAZ, Univ. of Texas-El Paso, GREGORY BRENN, Union College, PAULA BURGI, Smith College, CLAYTON FREIMUTH, Trinity University, SHANNON FASOLA, St. Norbert College, CLAIRE MARTINI, Whitman College, ELIZABETH OLSON, Washington & Lee University, CAROLYN PRESCOTT, Macalester College, DUSTIN STEWART, California State Polytechnic University-Pomona, ANTHONY MURILLO GUTIÉRREZ, Universidad Nacional de Costa Rica (UNA)

HOLOCENE AND MODERN CLIMATE CHANGE IN THE HIGH ARCTIC, SVALBARD NORWAY
Faculty: AL WERNER, Mt. Holyoke College, STEVE ROOF, Hampshire College, MIKE RETELLE, Bates College
Students: JOHANNA EIDMANN, Williams College, DANA REUTER, Mt. Holyoke College, NATASHA SIMPSON, Pomona (Pitzer) College, JOSHUA SOLOMON, Colgate University

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1062720
ExxonMobil Corporation
Keck Geology Consortium: Projects 2013-2014
Short Contributions—Earthquake Geomorphology, Costa Rica Project

THE GEOMORPHIC FOOTPRINT OF MEGATHRUST EARTHQUAKES: MORPHOTECTONICS OF THE 2012 MW 7.6 NICoya EARTHQUAKE, COSTA RICA
Faculty: JEFF MARSHALL, Cal Poly Pomona
TOM GARDNER, Trinity University
MARINO PROTTI, Universidad Nacional de Costa Rica
SHAWN MRRISH, Cal Poly Pomona

ACTIVATION OF A SECONDARY OBLIQUE SLIP FAULT FOLLOWING THE MW=7.6 SEPTEMBER 5, 2012, NICoya, COSTA RICA, EARTHQUAKE
RICHARD ALFARO-DIAZ, University of Texas at El Paso
Research Advisors: Terry Pavlis and Aaron Velasco

EARTHQUAKE RELOCATION AND FOCAL MECHANISM ANALYSIS IN THE AREA OF RUPTURE FOLLOWING THE MW=7.6 NICoya EARTHQUAKE, COSTA RICA
GREGORY BRENN, Union College
Research Advisor: Dr. Matthew Manon

MODELING COSEISMIC SLIP OF THE 2012 NICoya PENINSULA EARTHQUAKE, COSTA RICA: ROLES OF MEGATHRUST GEOMETRY AND SURFACE DISPLACEMENT
PAULA BURGI, Smith College
Research Advisor: Jack Loveless

HOLOCENE BEACHROCK FORMATION ON THE NICoya PENINSULA, PACIFIC COAST, COSTA RICA
CLAYTON FREIMUTH, Trinity University
Research Advisor: Thomas Gardner

ANALYSIS OF AFTERSHOCKS FOLLOWING THE SEPTEMBER 5, 2012 NICoya, COSTA RICA MW 7.6 EARTHQUAKE
SHANNON FASOLA, St. Norbert College
Research Advisor: Nelson Ham

COASTAL UPLIFT AND MORTALITY OF INTERTIDAL ORGANISMS FROM A MAGNITUDE 7.6 EARTHQUAKE, NICoya PENINSULA, COSTA RICA
CLAIRE MARTINI, Whitman College
Research Advisors: Kevin Pogue and Bob Carson

ASSESSMENT OF CURRENT RADIOMETRIC DATING TECHNIQUES OF BEACHROCK ON THE NICoya PENINSULA, COSTA RICA
ELIZABETH OLSON, Washington and Lee University
Research Advisor: David Harbor

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1062720
ExxonMobil Corporation
RELATIONSHIP BETWEEN BEACH MORPHOLOGY AND COSEISMIC COASTAL UPLIFT, NICOYA PENINSULA, COSTA RICA
CAROLYN PRESCOTT, Macalester College
Research Advisor: Kelly MacGregor

STRATIGRAPHIC ARCHITECTURE OF AN ANOMALOUS HOLOCENE BEACHROCK OUTCROP, PLAYA GARZA, NICOYA PENINSULA, COSTA RICA
DUSTIN STEWART, Cal Poly Pomona
Research Advisor: Jeff Marshall

PREMONITORY SEISMICITY BEFORE THE SEPTEMBER 5, 2012, MW 7.6 NICOYA EARTHQUAKE, COSTA RICA: RELATIONSHIP WITH MAINSHOCK RUPTURE AND AFTERSHOCK ZONE
ANTHONY MURILLO GUTIÉRREZ, Universidad Nacional de Costa Rica (UNA)
Research Advisor: Marino Protti

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1062720
ExxonMobil Corporation
COASTAL UPLIFT AND MORTALITY OF INTERTIDAL ORGANISMS FROM A 7.6 MW EARTHQUAKE, NICOYA PENINSULA, COSTA RICA

CLAIRE MARTINI, Whitman College
Research Advisors: Kevin Pogue and Bob Carson

INTRODUCTION

Coastal uplift produced by the Mw 7.6 Costa Rica earthquake of 5 September 2012 caused widespread mortality of intertidal organisms along the central coast of the Nicoya Peninsula. Preliminary measurements of this die-off were made as part of post-earthquake geomorphic fieldwork that documented the distribution and magnitude of coastal uplift (Marshall et al., 2013). These geomorphic measurements, coupled with geodetic data from the Nicoya GPS network (Protti et al., 2014), show that coseismic deformation extended along ~80 km of coastline, with pronounced uplift of ≥ 0.4 m along the central 30 km. The goal of this study is to further examine the intertidal mortality along this zone in order to provide additional detailed constraints on coseismic coastal uplift.

At the seismically active subduction interface of the Nicoya Peninsula, the Cocos Plate subducts beneath the Caribbean Plate at about 8.5 cm/yr. Prior to 2012, the last major rupture of the Nicoya seismogenic zone was an Mw 7.8 earthquake in 1950 (Protti et al., 2001). That earthquake generated significant coseismic coastal uplift, followed by several decades of interseismic subsidence (Marshall and Anderson, 1995). Leading up to the 2012 event, global positioning system (GPS) geodesy was used to identify a locked patch, approximately 60 km in length along strike (Feng et al., 2012). The 5 September 2012 earthquake occurred directly under the Nicoya Peninsula, rupturing the lateral and down-dip extent of the previously locked plate interface (Yue et al., 2013; Protti et al., 2014).

Figure 1. Uplift along the Nicoya Peninsula. Stars represent study sites along the coast of the Nicoya Peninsula. Playa Carrillo is onshore of the rupture patch in the 2012 earthquake; the epicenter was off Punta Guiones, just west of Playa Garza. Note that tide gauge used for MSL calibration is in Puntarenas, and although not located on the peninsula, tides are accurate for the Nicoya coast. (After Marshall and Morrish, 2012.)
Within the surveyed area, GPS indicated that uplift ranged from less than 10 cm to about 60 cm. No subsidence was observed on the Pacific coast of the Nicoya Peninsula. These observations are consistent with models of tectonic deformation that result from subduction at the Middle American Trench. The Nicoya Peninsula occupies a high-potential seismic gap, with seismic cycle deformation recurring approximately every 50 years; the net uplift and topographic relief observed on the Peninsula likely result from seismic cycle strain and crustal thickening due to tectonic erosion and underplating (Marshall et al., 2012).

BIOMARKERS

Intertidal organisms have been used to measure uplift in Chile (Saint-Amand, 1961; Plafker and Savage, 1970; Castilla, 1988), Alaska (Plafker, 1965 and 1969), Mexico (Bodin and Klinger, 1986), California (Carver et al., 1994). Bodin and Klinger (1986) defined the range of intertidal die-off from coseismic uplift as the “vertical extent of mortality” (VEM).

In this study, VEM measurements were recorded at seven coastal field sites to estimate the magnitude of coseismic uplift along rupture area of the Nicoya seismogenic zone. Field measurements, photographs, and eyewitness accounts of intertidal mortality recorded two weeks after the earthquake in September 2012 (Marshall et al., 2013) were compared with spot measurements, surveys, and population counts taken during this Keck Project in June-July 2013. The VEM was measured by surveying the vertical distribution and mortality of selected biomarkers on rocky platforms and headlands. To characterize earthquake-related mortality in the intertidal zone, the VEM of three sessile species was measured: a clam (Chama echinata), the ribbed barnacle (Tetraclita stalactifera) and green crustose algae (Sibaja, 2006).

Chamidae, commonly known as “jewel box” clams, are a family of saltwater clams endemic to tropical waters near Costa Rica (Sibaja, 2006). The jewel boxes are readily identifiable due to lurid coloration and distinctive flattened spines, irregularly arranged in radial rows. Clams attach to the rock by their left anterior valve, with the surface of the right valve covered with close-set, small spines. These clams are adapted to water with little suspended material, and are cemented to massive rocks in exposed areas from the low intertidal zone to a depth of several meters. *Tetraclita stalactifera*, the ribbed barnacle, has distinctive conical to tubular morphology, with calcareous plates. It lives in the upper to mid intertidal range (Sibaja, 2006). As observed on the Nicoya Peninsula, microhabitat distribution and wave geometry impact the settlement patterns of all populations of biomarker species. Recolonization rates of a microalga after uplift in central Chile were found to be in excess of 1 year (Castilla and Oliva, 1990).

Semi-diurnal tides in Costa Rica have a maximum range of 3.5 m. It was assumed that intertidal organisms prefer to occupy roughly the same elevation above Mean Sea Level (MSL measures mean sea level as an average of low and high tides), throughout their geographic distribution on the Peninsula. Because each species has a maximum duration of emergence (the amount of time it can exist out of the water at low tide), populations have a distinct upper boundary. When an organism is found far above its normal range, it is likely due to coseismic uplift.

STUDY SITES AND LITHOLOGY

Study sites spanned almost 40 km on the Pacific coast of the Nicoya Peninsula. From north to south, the sites surveyed were Tamarindo, Playa San Juanillo, Playa Peladas, Playa Garza, Playa Carrillo, and Playa Roblar. These sites (Fig. 1) span the full range of coseismic uplift as measured by post-earthquake fieldwork and GPS stations (Marshall et al., 2013; Protti et al., 2014). With the exception of Playa Peladas and Playa Garza (upper Cretaceous to Paleogene deep-sea sedimentary strata), the substrate at all sites consisted of Nicoya Complex basement rocks (Jurassic-upper Cretaceous basalts, gabbros, and plagiogranites) (Dengo, 1962). We noted little difference in the abundance of intertidal species between basaltic and sedimentary substrate.

METHODS

The upper and lower extents of the three biomarker species were surveyed using a laser rangefinder. Mortality counts were conducted by hand, within a 25x25 cm square grid placed randomly at different
At the survey site unaffected by uplift, the mean mortality of the barnacles that populate the upper intertidal zone was 36%. The lower half of the intertidal zone, populated by jewel box clams, had mean mortality of 54%. Using this data as a reference for normal ranges and mortality, abnormal mortality likely due to uplift was defined as mortality above 36% for barnacles and greater than 54% for bivalves. At each survey site, mean mortality of the population was greater than that of the population at Tamarindo (Fig. 5).

In addition to bivalves and barnacles, a notable biomarker was an orange-tan band of dead algae (Fig. 6). The band occupies the former high-tide range, and is interpreted as a high-tide desiccation band. This desiccation band was used as a direct indicator marking the zone of coseismic uplift (Fig. 7). The width of the band corresponds directly to the vertical magnitude of uplift. Likely because of variation in beach morphology, the desiccation band was most apparent at Playa Peladas and Playa Garza (rocky intertidal platforms with significant and regular vertical relief). In other survey locations where the wavecut platform terminated in beach sand or a distal cliff face, beach morphology was thought to prevent the growth of significant algal mats that could be used to measure uplift.
Because both geomorphic and GPS measurements of uplift (Marshall et al., 2013; Protti et al., 2014) exceed the measured extent of mortality as Playa Peladas, Playa Garza, Playa Carrillo, and Playa Roblar, we propose that the measured VEM estimates minimum uplift. In these places, the pre-earthquake range of these organisms was less than the vertical magnitude of uplift. Carver et al (1992) proposed that VEM could be called “minimum limiting” in these situations. Figure 8 summarizes VEM-measured uplift versus GPS-measured uplift by site.

DISCUSSION

In the field, several possible confounding variables were observed, including pollutants in the water (sewage effluent pipes near study sites), turbidity, and human gathering of shellfish (for example, oysters were not deemed to be a viable biomarker because of their popular use in local cuisine). We presume that after uplift has shifted organisms out of their range, re-colonization will occur; however, significant colonization of barnacles, bivalves, or algae is unlikely within the 10 month window between coseismic uplift and most of our surveys.

Figure 8 summarizes VEM-measured uplift versus GPS-measured uplift by site.

CONCLUSIONS

This study uses biological markers to measure coseismic uplift from the 2012 Mw7.6 Nicoya Earthquake on the Pacific coast of Costa Rica. Measuring the mortality and vertical extent of the ribbed barnacle, jewel box clam, and a crustose algae, we find that observed mortality correlates strongly with prior measured vertical uplift (geomorphic and GPS). This technique may be used in the future where...
organisms occupy a significant vertical range in the intertidal zone to create more detailed models of local uplift, with particular utility in Costa Rica for the study of shallow near-shore subduction earthquakes.

REFERENCES

Castilla, J.C., and Oliva, D., 1990, Ecological consequences of coseismic uplift on the intertidal kelp belts of Lessonia nigrescens in central Chile: Estuarine, Coastal and Shelf Science, v. 31, p. 45-46.

