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INTRODUCTION
Because seismic hazard assessment and natural 
resource development rely on prediction of fault 
behavior, structural geologists commonly model the 
evolution of fault systems to better understand their 
long-term evolution. Researchers have established 
that faults perturb local stress fields as they propagate, 
influencing the formation of minor faults and intense 
fracturing in an envelope, or “damage zone”, around 
them (Fig. 1) (e.g., Peacock and Sanderson, 1996; 
Shipton and Cowie, 2003; Kim et al., 2004; Choi 
et al., 2016).  These damage zones increase rock 
permeability, which enhances groundwater flow rates 
(e.g., Rowley, 1998), hydrocarbon migration (e.g., 
Morley et al., 1990), ore mineralization (e.g., DeWitt 
et al., 1986), and geothermal energy production 
potential (e.g., Siler et al., 2018; Shervais et al., 2024).

In addition, although researchers have long recognized 
that fault zones are segmented, as opposed to 

continuous, planar surfaces (e.g., Tchalenko, 1970; 
Schwartz and Coppersmith, 1984), researchers 
have made significant advances in the role that 
segmentation plays in overall fault system evolution 
(e.g., Long and Imber, 2011; Siler et al., 2018; 
Surpless and Thorne, 2021) as well as how interacting 
faults affect damage zone development (e.g., Kim 
et al., 2004; Choi et al., 2016). Where two adjacent 
normal fault segments interact, fracturing is commonly 
amplified, increasing the volume of rock damaged 
relative to two separate, isolated faults (e.g., Stock and 
Hodges, 1990; Hudson, 1992; Faulds, 1996).

Recent studies suggest that damage zones may 
not develop symmetrically on either side of a fault 
plane; instead, damage zone development may be 
asymmetric, with one side (hanging wall or footwall) 
displaying a greater thickness than the other (e.g., 
Berg and Skar, 2005; Ferrill et al., 2011; Liao et al., 
2020). In addition, researchers debate whether the 

Figure 1. Development of a fault damage zone during normal fault propagation and displacement. A. damage zone development ahead 
of a propagating, elliptical fault tip and parallel to the fault plane (adapted from Fossen, 2016). B. Damage zone architecture and 
terminology (adapted from Laio et al., 2020).
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width of the damage zone and fault displacement are 
proportional, with width increasing at a constant ratio 
as displacement accumulates (e.g., Shipton and Cowie, 
2001), or if damage zone width occurs rapidly early in 
a fault’s history and increases at a much slower growth 

rate later in a fault’s displacement history (e.g., Savage 
and Brodsky, 2011; Mayolle et al., 2021, 2023).

In this Keck Utah Advanced Project, three students 
investigated the evolution of normal fault damage 
zone development with increasing displacement. 
Students investigated fault-related fracturing along 
the central Sevier fault zone in southern Utah (Fig. 2), 
focusing on damage zone development associated with 
fault displacements ranging from near zero to nearly 
800 meters. Another student studied spectacularly 
well-exposed normal fault systems in the Tharsis 
region of Mars to investigate the structural evolution 
of a segmented normal fault system across a range 
of scales, and another student performed MATLAB 
modeling of a normal fault damage zone as a step in 
determining geothermal energy potential.

BACKGROUND
The Sevier normal fault, considered one of the most 
important structures in the Basin and Range province 
(e.g., Davis, 1999; Lund et al., 2008), is part of the 
Toroweap-Sevier fault system, which extends for more 
than 300 km from northern Arizona to southern Utah 
(Fig. 2). The fault has accommodated extension across 
the transition zone from the Basin and Range province 
to the relatively stable Colorado Plateau since the 
Miocene (e.g., Reber et al., 2001; Lund et al., 2008), 
and previous workers have noted the potential of the 
fault to produce significant earthquakes (Anderson and 
Rowley, 1987; Doelling and Davis, 1989; Anderson 
and Christenson, 1989; Christenson, 1995; Lund 
et al., 2008). It is likely that many segments of the 
Sevier fault reactivate older high-angle, Laramide-
age contractional structures (e.g., Taylor et al., 2024; 
Stewart and Taylor, 1996; Schiefelbein and Taylor, 
2000), which may explain why the steeply-west-
dipping fault zone is segmented in map view, with 
variations in the geometry of linkages between normal 
fault segments (e.g., Davis, 1999; Reber et al., 2001; 
Schiefelbein, 2002; Doelling, 2008).  

Three students focused their investigations on a 
particularly complex portion of the Sevier fault zone, 
termed the Orderville geometric bend (e.g., Reber et 
al., 2001; Taylor et al., 2024) (Fig. 3). The Orderville 
bend displays a range of geometries associated with 

Figure 2. The Sevier fault zone study area within the Basin and 
Range-Colorado Plateau transition zone [see inset, with the 
location of Salt Lake City (SLC) indicated with a star]. The 
red lines on the inset figure are orientations of the maximum 
horizontal stress field (SHmax) as constrained by Lundstern and 
Zoback (2020). The Sevier-Toroweap fault, the Grand Wash fault, 
the Washington fault, the Hurricane fault, and the Paunsaugunt 
fault accommodate extension across the transition zone. Ball is 
on the hanging wall of faults. The epicenter of the 1992 M5.8 
St. George earthquake is indicated by the red and white symbol, 
labeled “EQ” (Christenson, 1995). Approximate areal distribution 
of the Marysvale volcanic field is outlined by dashed lines.  Blue 
box indicates the location of Red Canyon (RC), where Hecker 
(1993) constrained slip rate along the Sevier fault.  Study area 
boxed in white. Fold data are from Doelling and Davis (1989), 
Bowers (1991), and Stewart and Taylor (1996). Digital shaded 
relief modified from Thelin and Pike (1991). Figure modified from 
Hecker (1993), Reber et al. (2001), Surpless and McKeighan 
(2022), and Taylor et al. (2024)..
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To address fundamental questions about how rock 
volumes respond to the evolution of complex, 
segmented, normal fault systems, students applied a 
variety of approaches, including analysis of field data, 
3D digital modeling and analysis of photographic 
data, MATLAB computer modeling of thermal energy 
transfer in an enhanced geothermal system, and 

the interactions of three fault segments, which include 
the Mt. Carmel segment, the Orderville segment, 
and the Spencer Bench segment (Taylor et al., 2024). 
Mapping by Taylor et al. (2024) reveals a network 
of faults from the latitude of Orderville to the south 
that display a range of dip-slip displacements (Fig. 3), 
permitting documentation of changes in damage zone 
development at different accumulated displacements.   

In addition, a fourth student focused their research 
on the Alba Fossae fault network, which is a 
circumferential fault system on the west flank of 
Alba Mons in the northern Tharsis region of Mars, 
one of the largest volcanoes in the solar system. She 
addressed research questions about the geometries and 
variations in displacement, leveraging those data to 
decipher the initiation and propagation history of the 
fault system.

Finally, a fifth student used thermodynamic modeling 
in MATLAB to learn more about how effectively 
thermal energy transfers from the rock within a 
damage zone to fluids driven by applied pressure 
differences. Her research can be applied to utility-
scale geothermal plant development, where companies 
must evaluate the design of injection and withdrawal 
systems in their assessment of geothermal energy 
potential. 

STUDENT PROJECTS
Three students used the excellent vertical and lateral 
exposure of the Jurassic Navajo sandstone at the 
two primary study areas, at Red Hollow Canyon and 
Elkheart Cliffs (Fig. 3) to directly observe faults and 
fractures within this well-studied lithology (e.g., 
Rogers and Engelder, 2004; Schultz et al., 2010; 
Solom et al., 2010). The Elkheart Cliffs exposure (“3” 
in Fig. 3) displays the simplest fault geometry because 
the Mt. Carmel segment accommodates all E-W 
extension. At the latitude of Red Hollow Canyon (Fig. 
3), extensional strain is accommodated by multiple 
structures, but students focused their research on the 
southern end of the Spencer Bench segment, where 
accumulated displacement tapers from ~10 m in the 
north to the fault tip (0 m), permitting two students to 
study changes in strain accommodation with changes 
in displacement (study areas 1 and 2 in Fig. 3).

Figure 3. Simplified structural map of the steeply WNW-dipping 
central Sevier fault zone. Yellow faults represent the primary 
segments of the fault zone, and the white faults are subsidiary 
faults that help accommodate extension across the fault network. 
The blue shaded areas represent exposures of the Jurassic Navajo 
Sandstone, and areas shaded in transparent greens and yellows 
are the hanging wall of the Mt. Carmel segment, including: Kt 
(Cretaceous Tropic Shale), Kdcm (Cretaceous Dakota and Cedar 
Mountain Formations), Qag (older alluvial gravels), and Qal 
(modern alluvium).  The white circled numbers represent the 
locations of field and modeling studies performed by Lila Ryter 
(1), Ariel Montalvo (2), and Sydney Costa (3).
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remote-sensing analysis of a complex, segmented 
fault system in the Tharsis region of Mars. Their work 
improves our understanding of the 3D evolution of 
faults and fracture networks in complex normal fault 
zones, which has important implications for natural 
resource exploration.

Sydney Costa (West Chester University) focused 
her investigation on a locality where the Mt. Carmel 
segment has accumulated ~800 meters displacement. 
She used field observations and data in combination 
with Structure-from-Motion (SfM) model analysis 
to investigate how fault- damage zones develop in 
response to high displacements (3 in Fig. 3). Her 
analysis of the Jurassic Navajo Sandstone revealed 
a ~100-120m wide footwall damage zone structure 
consistent with previous studies, with a fault core 
of concentrated strain as well as an inner and outer 
damage zone. The fracture network exhibited 
orientations sub-parallel to the primary fault plane, and 
the total width of the footwall damage zone is only 
two to three times the width of the footwall damage 
zone investigated by Ryter (this volume) despite 
accumulated displacement that is over 300 times 
greater, clearly showing that the width of the damage 
zone envelope around a normal fault system does not 
increase proportionally with displacement, consistent 
with Savage and Brodsky (2011). Sydney attributes 
the change in rate of damage zone width increase to 
two primary factors in her short contribution.

Demi Durham (Trinity University) used Google Mars 
to investigate a complex circumferential fault network 
on the western flank of the Alba Mons volcano in 
the Tharsis region of northern Mars. She was able to 
relate map view fault geometries and finite extension 
estimates to the relationship between topography 
and the position of volcanic centers to build a new 
hypothesis for the initiation and evolution of the 
system. 

Demi found that the initiation of the circumferential 
fault system was likely influenced by both the upward 
propagation of N-striking dikes and the E-W-oriented 
local stress field, which was influenced by the uplift 
and/or subsidence of the volcanic center (e.g., Tanaka, 
1990; Ohman and McGovern, 2014). The geometries 
of the northern and southern portions of the fault 
system display en echelon geometries that support a 

fault network influenced by pre-existing faults to the 
north and south of the volcanic edifice of Alba Mons. 
The position of the circumferential fault network, 
with the central system coinciding with the peak of a 
western volcanic center on the Alba Mons complex, 
suggests that magmatic overpressure likely added 
a tensional component that permitted faults to form 
at that location prior to propagation of the network 
northward and southward along the western margin of 
the volcano.

Isabel Garcia (Trinity University) Isabel investigated 
fluid flow and thermal flux within a simplified 
enhanced geothermal system (EGS) by modeling 
the system as a hydraulically fractured cylindrical 
channel in the subsurface at sufficient depth for high 
enough temperatures in an extensional setting. The 
model consisted of nested cylinders with radially 
decreasing permeability and radially increasing 
thermal conductivity (rock is more conductive than 
water). She used Darcy’s law to govern fluid flux as a 
function of distance from the center (r), and she varied 
the radius and permeability to investigate the effects 
of these variables on energy flux from the intact rock 
into the system. She solved the transient heat equation 
and calculated the thermal flux as a function of r for 
different cases. She compared this to the fluid flux 
and extracted the total thermal flux flowing out of 
the system at the extraction well. This indicates how 
long the channel would have to be for this simplified 
system to be a viable source of energy.

Ariel Montalvo (Whitman College) investigated the 
Spencer Bench fault segment where accumulated 
displacement tapers southward from ~10 m on the 
north side of Red Hollow Canyon to ~3 m on the south 
side of the canyon (Fig. 3). He used field observations 
and data in combination with Structure-from-
Motion (SfM) model analysis to investigate fracture 
characteristics along the steeply west-dipping fault. 
He found that hanging-wall fractures were oriented 
sub-parallel to the fault plane in the best exposures 
along the segment, and Ariel also learned that fracture 
intensities were higher in the southern hanging wall, 
where displacements were lower. This suggests that at 
least at low displacements, fracture intensities cannot 
be easily correlated with accumulated displacement. 

Ariel also learned that the fracture intensity values 



The Keck Geology Consortium, v. 37, 2025

5

in the hanging wall were much higher than in the 
footwall, consistent with previous studies that suggest 
asymmetry in normal fault damage zones (e.g., Berg 
and Skar, 2005; Liao et al., 2020). Finally, Ariel 
documented that the orientation of steeply dipping 
fractures in the footwall displayed strikes rotated 
about 25 degrees clockwise relative to the fault-
parallel fractures in the hanging wall. Ariel provides 
hypotheses to explain these data.

Lila Ryter (Beloit College) used Structure-from-
Motion (SfM) model analysis to investigate how fault- 
damage zones develop (Fig. 1) in response to the very 
low displacements near the fault tip of the Spencer 
Bench segment. She learned that fracture intensity 
in the hanging wall damage zone was higher than in 
the footwall, and she also learned that the width of 
the hanging wall damage zone was wider than the 
footwall damage zone. In addition, Lila found that the 
footwall damage zone width at very low displacement 
values (<2.5 m) was approximately 40-m wide, while 
the width of the nearby Mt. Carmel segment, with 
displacements of 200 – 800 meters, was just 100-
120 m wide. Thus, when combined with Sydney’s 
findings, damage zone widths do not scale linearly 
with accumulated displacements and support a model 
of damage zone development with growth early in the 
displacement history and much slower widening as 
displacement accumulates. Her findings are consistent 
with the model presented by Savage and Brodsky 
(2011).
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