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BACKGROUND

Examination of pore water and sediment chemistry 
provides insight into nutrient cycling and the micro-
bial processes that may in turn influence the local 
abundance of dinoflagellates in the bays of Vieques.  
Although sedimentary bacteria have little influence 
on processes in the water column in the open ocean, 
the extent of benthic-pelagic interaction increases in 
shallower, more productive coastal marine environ-
ments, such as Puerto Mosquito and Puerto Ferro 
(Capone et al. 1988).

Mangrove ecosystems are rich in organic matter 
and highly productive, yet they are generally nutri-
ent-deficient, especially of nitrogen and phosphorus 
(Holguin et al. 2001, Sengupta and Chaudhuri 1991; 
Holguin et al. 1992; Alongi et al. 1992; Vazquez et al. 
2000).  This puzzle may be explained by the partici-
pation of microbial communities in nutrient trans-
formation in the mangrove ecosystem.  Microbial 
activity in the sediment column may support a very 
efficient recycling system of nutrients from decom-
posing mangrove leaves (Holguin et al. 2001).

Previous studies suggest that there is an intimate 
linkage between the productivity of bay waters 
and underlying shallow coastal marine sediments 
(Capone et al. 1988, Kristensen 2000, Alongi et al. 
1998).  Specifically, studies of intertidal mangrove 
ecosystems have revealed close couplings among 
benthic nutrient pools, microbes, and mangrove 
trees:  mechanisms which maximize the use of 
scarce nutrients (Alongi et al. 1998).  Currently, 
it is established that heterotrophs in the sediment 
column decompose organic matter supplied by 
photoautotrophic processes in the water column.  
Aerobic and anaerobic microbes in the sediments, in 

turn, affect the production of new organic matter in 
the water column by the rate at which they oxidize 
organic material and return inorganic nutrients to 
the overlying water.

Organic carbon oxidation within the sediment col-
umn follows a vertical sequence of microbial respi-
ration reactions starting with the most energetically 
favorable electron acceptors.  The predicted thermo-
dynamic progression is often observed (O2 >NO3- 
>MnO2 > FeO(OH) > SO4

2- > CO2) (Capone et al. 
1988).  However, the thermodynamic argument 
does not fully explain the distribution of microbial 
activities.  Factors such as differential toxicity and 
substrate specificity and affinity are often involved 
(Capone et al. 1988).

In near-shore marine sediments, organic content is 
high and oxygen consumption is rapid.  Thus, O2 
is usually depleted only a few millimeters into the 
sediment column, with the exception of areas where 
bioturbation spreads the transition from oxic to 
anoxic conditions throughout a larger depth range 
(Jǿrgensen 1982; Jǿrgensen and Revsbech 1983).  
Aerobic processes are the most efficient means of 
breaking down organic matter, since oxygen is the 
most energetically favorable electron receptor for or-
ganic decomposition (Kristensen 2000).  From pre-
vious incubation and flux experiments in Vieques, 
rates of organic matter decomposition were found 
to vary locally within each bay, and seemed to be 
predominately controlled by availability of organic 
carbon in the sediments (Palevsky 2007).  

Anaerobic microbial decomposition is more com-
plex than aerobic respiration.  In anoxic zones, 
individual microbes are incapable of performing 
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all the metabolic processes required for complete 
organic matter decomposition and must form 
symbiotic communities.  The processes involved in 
anaerobic degradation of organic material may be 
viewed as sequential in space or in time, as recently 
deposited material moves deeper into the sediments 
and through different bacterial zones (Capone et al. 
1988). 

Sulfate reduction (2CH2O + SO4
2- → H2S + 2HCO3-) 

is responsible for most of the organic carbon oxida-
tion in the suboxic-anoxic zones of these mangrove 
forests due to high concentrations of sulfate in 
seawater.  When sulfate is reduced by sulfate reduc-
ing bacteria, soluble sulfur compounds such as H2S 
and HS are produced, which then react with iron, 
reducing Fe (III) to Fe (II) and yielding pyrite (FeS2).  
Soluble sulfur compounds may also react with 
manganese, reducing Mn (IV) to Mn (II), which 
generally occurs as a microbially-mediated process 
(Alongi 1998).  

Nitrogen-fixing (diazotrophic) bacteria may also 
play in important role in mangrove sediements.  
High rates of N2 fixation have been associated with 
dead and decomposing leaves and with the sedi-
ments of mangrove ecosystems (Zuberer and Silver 
1978; Potts 1979).  A positive correlation has been 
found between acetylene-reduction rates (a mea-
surement of the rate of N2 fixation) and the availabil-
ity of organic matter, despite the high energy cost of 
N2 fixation (Holguin et al. 2001).  

The rates and pathways of organic matter decom-
position in Vieques sediments can be better under-
stood by characterizing the structure of sediment 
column microbial communities.  This study focuses 
on the microbial activity (using oligonuceotide 
probes for eukarya, archaea and bacteria) that oc-
curs at sediment faces changes indicated by TOC 
(total organic carbon) and TIC (total inorganic 
carbon) in the sediment column.  DNA sequenc-
ing, T-RFLP (terminal-restriction fragment length 
polymorphism) analyses and FISH (fluorescent 
in-situ hybridization) imaging have been used to 
characterize microbial populations and to gain an 
understanding of how they differ with location and 

depth and how they relate to sediment and pore wa-
ter chemistry.  In order to conserve and sustainably 
manage the Vieques bay ecosystem, especially the 
unique populations of dinoflagellates, it is necessary 
to understand the factors regulating the generally 
high rates of aboveground net primary production, 
including the extent to which mangrove-derived 
organic matter is recycled and conserved within the 
forest floor (Alongi et al 1998).

METHODS

Replicate 20 cm and 100 ± 50 cm cores of the top 
sediment layers were collected at deep and shallow 
water depths in each bay (Puerto Ferro and Puerto 
Mosquito).  20 cm cores were subsequently frozen 
at -80°C until processed for DNA and phosphate ex-
traction.  The 100 cm cores were used for sediment 
characterization and pore water extraction.
Volumes of overlying and pore water from each 
sampling site were filtered through a 0.45μm nylon 
membrane and preserved for later geochemical 
analysis.  Major anion concentrations were quanti-
fied on a Dionex 500-series Ion Chromatograph 
(IC) and major cations were quantified on a Leeman 
Labs Inductively Coupled Plasma Atomic Emission 
Spectrophotometer (ICP-AES).  Dissolved inorganic 
carbon (DIC) was measured using a flow injection 
analysis instrument designed after Hall and Aller 
(1992).

Volumes of pore water were processed further by 
filtering through a 0.2 μm polycarbonate mem-
brane, fixed with formalin and stained with 4, 
6-Diamidino-2-Phenylindole (DAPI) for direct cell 
counts.  Filters were mounted on slides and viewed 
and photographed with a Nikon CoolPix 990 digital 
camera attached to a Zeiss Axioskope epifluores-
cence microscope. 7 images/filter were used for cell 
counting with NIH image analysis software.
DNA for clone libraries of 16S rRNA genes and T-
RFLP and analysis was isolated from the preserved 
20 cm cores using a MoBio UltraClean Soil Extrac-
tion Kit.  Three different sets of primers were used 
for PCR (polymerase chain reaction) amplification 
of bacterial, archaeal, and eukaryotic 16S/18S rDNA.  
Forward primers were tagged with fluorescent dye 
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for fragment analysis.  PCR products were purified 
using a QIAquick PCR purification kit (Qiagen) 
and digested separately with enzymes MspI, HhaI 
and RsaI.  Digested products were separated by gel 
electrophoresis on a polyacrylamide gel and frag-
ment size measurements were performed on an ABI 
PRISMTM 310 genetic analyzer (Cornell University 
genomics facility).  T-RFLP analysis allowed for 
comparisons of microbial community diversity be-
tween different sediment sampling sites and between 
different depths within the sediment column of each 
sampling site.  

RESULTS

The geochemical profiles of [SO4
2-] in the deep and 

shallow water cores were similar.  At the sediment 
surface, sulfate concentrations with respect to chlo-
ride concentrations were ~51mM/M (standard over-
lying seawater ratio).  Beneath the surface-sediment 
interface, sulfate decreased rapidly in both cores, 
but the drop in sulfate concentration was lower in 
shallow environment cores.  At approximately 8cm, 
pore water sulfate concentrations begin to increase 
in both cores, and then begin to level off at about 
18cm, once again approaching overlying seawater 
values.  The sulfate profile broadly correlates in-
versely with the DIC profile in the uppermost 20cm 
of both cores (Fig. 1).

Extracted DNA was tested for PCR amplification 
with universal primers that targeted ~1,000 bp 
regions of eukarya, bacteria and archaea ribosomal 
DNA (rDNA).  Expected product was obtained 
under selected PCR conditions with no evidence of 
other products, which indicates that no non-specific 
products were amplified (Fig. 2).

Non-specific products are undesirable, since they 
may lead to overestimations of microbial diversity 
in rDNA fragment analyses.  Purified and enzyme 
digested PCR products were verified on 2% agarose 
gel (Fig. 3).

 Cell populations observed on DAPI-stained pore 
water filters ranged from 6.6 ×105 to 4.3×106 cells/
mL in shallow-environment cores and from 1.3 ×106 
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Figure 1:  Vertical pore water profiles showing sulfate/chloride and DIC (dissolved inorganic 
carbon, approximated by [HCO3ˉ]) concentration profiles for A) shallow-water and B) deep-
water environment cores from Puerto Mosquito. Shaded zones indicate samples used for molecu-
lar analysis.

Figure 2:  Inverted agarose gel (1%) image of amplified bacterial rDNA from sediment-derived DNA 
using bacterial-biased PCR primers.  Lane descriptions: 1=size marker 200 to 10,000 base standard; 
2-5, 7 &8= PF7 0-2, 4-6 and 14-16cm; 6=PM17 14-16cm; 8=PF9 4-6cm.
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to 4.8 ×106 cells/mL in deep-environment cores, 
with an enumeration uncertainty of ±10%.  

PF and PM deep environment pore water total cell 
count profiles were very similar.  Cell counts de-
creased significantly between 0 and 5cm to ~ 1.3 
×106 cells/mL, then gradually increased with depth 
(Fig. 5).  PF shallow environment pore water cell 
counts also decreased to ~1.3×106 cells/mL between 
0 and 5cm.  The PM shallow pore water cell count 
profile was slightly different from the rest in that 
cell counts never increased with depth.  PM shal-
low counts decreased throughout the top 15cm and 
the most rapid drop in numbers was between 5 and 
10cm depth instead of 0 and 5cm (Fig. 5).

DISCUSSION
	
In a typical sulfate reducation profile, sulfate con-
centration decreases gradually with depth as sulfate 
reducing bacteria (SRB) use it as an electron accep-
tor for organic matter decomposition reactions.  The 
typical profile, however, is not observed in most Vi-
eques shallow environment cores.  This may be due 
to the existence of oxic microniches along burrows 
of zoobenthos or along the living fine roots of man-
groves, which allow the oxic zone to extend further 
into the sediment column and consequently reduce 
the need for sulfate as a substrate, since O2 is a more 
thermodynamically favorable electron acceptor in 
organic matter decomposition reactions.

Cell density in the PM shallow core decreased sig-
nificantly with depth, while cell density decreased at 
2-5cm (relative to 0-2cm) for the deep-environment 
core from the same bay, then steadily increased with 
depth to 20cm, possibly as a result of anaerobic mi-
crobes thriving and forming symbiotic communities 
in anoxic sediments.  PF shallow and deep average 
cell count profiles were both similar to the PM deep 
environment core.

Relative to the shallow core from PF, the shallow 
core from PM has significantly more cells/mL in 
the 2-5cm interval, but significantly fewer cells/mL 
in the 5-10cm interval (2-way ANOVA, p<0.001).  
Pore water cell count fluctuations in PM may be ex-
plained by the fact that PF sediment is very homoge-
neous in the top 16cm, but PM sediment composi-
tion becomes significantly more shell-rich at ~6cm, 
where the pore water cell population decreases.  
These cell count differences may also be a result of 
differences in substrate material concentrations in 
the different bay sediments.  For example, perhaps 
PM shallow sediments have more dissolved NO3

- 
than PF shallow sediments at the 2-5cm interval 
and shallow environment PM sediments have lower 
heavy metal concentrations than shallow PF sedi-
ments at the 5-10cm interval.

Microbial diversity, expressed as ribotype rich-
ness, can be estimated by determining the number 
of unique terminal-restriction fragments (T-RFs) 

2.3 µm

Figure 4: photograph of cells stained with DAPI, viewed on an epifluorescent microscope, 100x
objective.
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from bacterial and archaeal 16SrDNA and eu-
karyal 18SrDNA digested separately with ‘targeted’ 
enzymes.  This method provides distinct profiles 
(fingerprints) dependent on the species composition 
of the communities of the samples and is a helpful 
tool for comparative community analysis.  T-RFLP 
results may indicate whether populations of bacte-
ria, archaea and eukarya differ significantly between 
the two bays in Vieques, and how they are affected 
by vertical redox gradients.

 T-RFLP has several shortcomings, however.  Results 
are subject to PCR biases.  Thus, the proportion of 
DNA that is amplified may not be representative of 
the entire microbial community.  Moreover, high 
humic acid content in near-shore sediment samples 
may decrease the yield of purified PCR product, 
since humic acids compete for adsorption sites on 
purification column binding membranes (Howeler 
et al. 2003).  In this study, purification columns for 
PCR amplified DNA extracted from near-shore shal-
low-environment sediments, particularly in Puerto 
Mosquito, needed to be overwhelmed with more 
PCR product than deeper-environment sediments 
to obtain the same amount of purified product.  We 
suspect, therefore, that humic acid content is higher 
in near-shore sediment than in deep environment 
sediment.
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