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INTRODUCTION

Coupling of climatic and tectonic forcing of exhu-
mation in active mountain belts has been the focus 
of much recent scientific scrutiny.  Variations in 
temperature and precipitation modify the efficiency 
of erosion, which can affect patterns of tectonic 
uplift (Willett et al., 2006).  Enhanced climatically-
driven erosion increases the local rate of mass re-
moval, which directly increases exhumation rate and 
potentially incites uplift through isostasy to bring 
deep crustal rocks to the surface (Champagnac et al., 
2007).

Reiners et al. (2003) demonstrated climatic forc-
ing of exhumation across the western Washington 
Cascades by correlating enhanced precipitation with 
lowered topography and rapid exhumation rates.  
Mitchell and Montgomery (2006) used cirque floor 
elevations in the Cascades as a proxy for Quaternary 
equilibrium line altitude (ELA), and showed that 
ELAs decreased with greater precipitation and faster 
exhumation.  Grujic et al. (2006) also observed 
climatic-tectonic coupling in the Bhutan Himalaya, 
concluding that variations in precipitation/erosion 
along orogenic strike led to differential uplift on a 
local scale, independent of tectonics.   In particular, 
a structural window of focused core exhumation 
bounded by shallow-angle normal faults was identi-
fied as an example of erosion-induced uplift.

This study will evaluate the possibility that the 
Lepontine Dome of the European Alps underwent 
climatically-driven focused core exhumation.  In 
particular, this study will determine whether or not 
paleo-ELAs were lower in the Lepontine region, 

using cirque floor elevations as a proxy for mean 
Quaternary ELA.  The Dome is an area of focused 
exhumation (Willett et al., 2006) that overlaps areas 
of high precipitation and low topography—con-
ditions that mirror those found in Reiners et al. 
(2003).  Lower ELAs within the Dome would sug-
gest that enhanced precipitation accelerated the lo-
cal rate of glacial erosion.  Accelerated local erosion 
throughout the Quaternary would suggest a strong 
climatic influence on the long-term exhumation of 
the Lepontine Dome.

REGIONAL SETTING

The European Alps are a convergent mountain 
belt created by the collision of African and Eur-
asian plates, beginning in the Cretaceous (Stampfli 
et al., 2002).  The gneissic Lepontine Dome is the 
primary exposure of crystalline basement in the 
southern Central Alps (Fig. 1).  The Dome consists 
of amphibolite-grade rock from the lower Penninic 
realm, surrounded by Penninic metasediment and 
structurally-higher Austroalpine units.  Spiegel et 
al. (2000) traced the date of surface exposure of the 
Lepontine core to ~14 Ma.
	
The Lepontine Dome is the footwall for the western 
Simplon normal fault and the eastern Forcla normal 
faults. Tectonics are responsible for a significant 
amount of exhumation, but at least half of the nearly 
28 km of measured exhumation (Kühni & Pfiffner, 
2001) may be the result of enhanced erosion.

The Lepontine area experiences regionally heavy 
precipitation (Fig. 2) due to the funneling of moist 
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air into the concave Lepontine region from the 
south.  Part of this funneling effect is due to the 
lowered topography of the Lepontine region, quan-
tified as a concave topographic ‘bite’ in Rakovec 
et al. (2001).  Modern Alpine precipitation events 
are influenced by the development of extratropi-
cal cyclones associated with Atlantic northwesterly 
cold fronts in the low-pressure ‘lee’ south of the Alps 
(Sturmann & Wanner, 2001).

Glaciation across the Alps at the Last Glacial Maxi-
mum (LGM) was extensive, with piedmont glaciers 

extending into the Swiss plateau in the north and 
the Po basin in the South (Kelly et al., 2004).  The 
Alpine ice sheet at the LGM was characterized by 
radial flow from ice domes. Their occurrence south 
of the present Alpine weather divide suggests that 
southerly precipitation was dominant at the LGM.  
Enhanced precipitation accelerates glacial erosional 
capacity by depressing equilibrium line altitudes and 
increasing mass turnover.  The large U-shaped Ti-
cino and Toce valleys in the Lepontine Dome served 
as southern glacier drainages for the Rhône, Rhine, 
and Engadine Ice Domes (Kelly et al., 2004).

Glaciation has most likely played a large role in ero-
sion since the widespread onset of Pliocene conti-
nental glaciations, and Oligocene cool periods could 
have theoretically brought on very early Alpine 
glaciations.  However, concrete evidence for glacial 
activity in the southern Central Alps beyond the 
Pliocene remains elusive.

METHODS

An inventory of cirques was taken for the south-
ern margin of the Western and Central Alps (Fig. 
3).  Only cirques south of the main Alpine weather 
divide were used to ensure all measured cirques are 
influenced primarily by Mediterranean circulation.  
These cirques provide a range of lithologic units 
(lower Penninic, upper Penninic, and Austroalpine 
units) while representing the dominant influence of 
southerly circulation during the LGM (Kelly et al., 
2004).
	
Cirques were defined as bowl- or armchair-shaped 
depressions with steep sides and a flattened or over-
deepened center; depressions that lacked depth or a 
flattened bottom were defined as nivation features, 
and were not counted (Trenhaile, 1976).  Cirques 
currently occupied by glaciers were also not count-
ed.  Only depressions closest to the ridgeline were 
counted, to ensure that overdeepenings in glacial 
staircases were not included as cirques.  Cirque floor 
elevations were counted from the cirque outlet, 
defined as the lowest point of the cirque lip.  If no 
outlet was evident, the lowest elevation in the cirque 
was used.
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Cirques were identified using Google Earth Plus 
v.4.2.0205.5730 at 512 x 512 resolution and me-
dium-low image quality.  The source coordinates 
and aerial photography for the constructed topogra-
phy were provided by Cnes/Spot image, Tele Atlas, 
PagineGialle.it, DigitalGlobe, Geocontent, and 
Terrametrics.  The UTM coordinates and elevation 
for each outlet was determined by pinning place-
marks to each cirque outlet.  These were manually 
input into a database and imported into ArcMap as 
a shapefile.
	
Averaged annual precipitation data from 1966-1995 
was converted into raster format, and then was 
converted into a polygon file.  Cirque locations were 
joined to the precipitation shapefile, and the joined 
attribute table was exported to MS Excel.  A simple 
linear least-squares analysis was performed to quan-
tify trends observed in the data.  The coefficient of 
determination (R2) was also calculated as a rough 
evaluation of the data’s correlation.
	
RESULTS
	
The graph of precipitation versus cirque floor alti-
tude (Fig. 4a) has a moderate (R2 = 0.485) negative 
correlation between overall precipitation and cirque 
floor elevation. The second graph (Fig. 4b) separates 

cirques from the Lepontine Dome from cirques out-
side the dome.  Lepontine cirques are well-separated 
from others on the basis of precipitation, reflecting 
the localized precipitation high in the Lepontine 
area.  In terms of altitude, Lepontine cirques show 
slightly lower altitudes, although there is significant 
overlap with outlying regions.

DISCUSSION

The correlation between cirque floor elevation and 
precipitation suggests ELA depression, and thus an 
enhancement of glacial erosion, occurred within the 
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Lepontine Dome.  However, several issues must be 
addressed before a link between precipitation and 
tectonic development is firmly established.

Trackback
	
To draw conclusions about long-term erosion rates, 
the climate regime responsible for enhanced local 
erosion during the Quaternary must be extended 
further back in time. The primary influence on Al-
pine climate is the shape and position of the Alpine 
chain and its influences on atmospheric movement 
(Rakovec et al., 2001). As long as the Alpine belt 
retained its general shape in relation to atmospheric 
circulation patterns, similar precipitation regimes 
could be inferred for past environments. 
	
Deep valley incision into the south-central Alps 
during the Messinian Salinity Crisis circa 5.5 Ma 
may have been caused by enhanced precipitation in 
the Lepontine area (Willett et al., 2006).  A humid 
late Miocene Europe would provide an ideal source 
region for westerlies necessary for heavy precipita-
tion over the Lepontine Dome.  Beyond the late 
Miocene, direct evidence for enhanced precipitation 
is limited.

Sources of error / alternative explanations

The primary sources of error within the study’s 
methodology lie in the multiple inferences neces-
sary to relate cirques, ELAs, and glaciers.  Cirques 
give only an averaged Quaternary ELA, and signifi-
cant fluctuations can occur.  Regional ELA may not 
directly correspond to local glaciation because a 
number of other factors, such as microclimatic dif-
ferences in precipitation and insolation, may affect 
individual glaciers.  Furthermore, the lack of a quan-
tified time scale for cirque development precludes 
discussion of concrete glacial erosion rates.

Several alternatives to climatic-tectonic forcing 
have been proposed.  Within the data set, the strong 
association of heavy precipitation with Lepontine 
rocks contrasts with the relatively poor association 
between cirque floor elevation and Lepontine rocks 
(Fig. 4b).  This may suggest that the local precipita-

tion high over the Lepontine Dome was a modern 
development, and local glaciers had insufficient 
time to carve cirques before abandoning them upon 
regional ELA rise.

Other alternative explanations conclude that ex-
humation across the Alps was primarily tectonic, 
caused by an Alpine-wide synchronous phase of 
Miocene lateral extrusion or variations in conver-
gence pattern (Frisch et al., 2000).  Precipitation 
variations would have no impact on long-term 
exhumation.

It should be noted that unresolved questions remain 
for the alternate hypothesis, as well.  The exten-
sional detachment of the Lepontine Dome occurs 
at a structurally lower level than the detachment of 
the Tauern window, another extruded dome in the 
Eastern Alps (Frisch et al., 2000).  This supports 
assertions that the Lepontine Dome underwent 
significant rapid exhumation prior to extension 
(Schlunegger & Willett, 1999), possibly by climatic 
controls on erosion.

Implications for future work

Several workers have used trimlines and glacial ero-
sional features to construct LGM paleoglacial recon-
structions for adjacent areas of the Swiss Alps (Kelly 
et al., 2004). A similar study could more accurately 
trace paleo-ELA in the Lepontine area.  Alternative-
ly, an estimate of glacially-eroded sediment volume 
could be made by calculating material lost in cirque 
formation (Gordon, 1977).  Finally, to evaluate the 
relative efficiency of glacial versus nonglacial ero-
sion, comparative quantitative studies on nonglacial 
erosion are required.

The results of this paper warn against oversimplifi-
cation of climate-induced erosion when interpret-
ing Alpine history.  Arguing for a tectonic control 
of orogenic development, Kuhlemann et al. (2002) 
dismissed long-term climatic forcing on the basis 
of regional paleofloristic data indicating conditions 
unfavorable for alpine glaciation.  However, regional 
paleoclimate indicators may not accurately describe 
local variations of Alpine climate.  Local variations 
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in exhumation do exist across the Alps, and local 
climate variation may help explain apparently con-
tradictory histories of Alpine exhumation.
	
Construction of a comprehensive Alpine paleocli-
matology is necessary to draw firmer conclusions 
about past Alpine climate.  Such a study would 
integrate fossil records, continent-scale paleotopog-
raphy, paleowind and paleocurrent data, and in-
depth sedimentological studies to better constrain 
long-term climatic conditions and dominant erosive 
processes.
	
CONCLUDING REMARKS

Evidence towards enhanced Quaternary glacial ero-
sion at local precipitation highs has been presented.  
A strong link between precipitation and cirque floor 
elevations is demonstrated, indicating an ongoing 
climatic influence on Quaternary ELA. Erosion-re-
sistant crystalline Lepontine rocks were glaciated 
more than weaker metasedimentary Austroalpine 
rocks.  This distribution of paleo-ELA independent 
of variant lithologies suggests climate plays a domi-
nant role in determining the degree of alpine glacial 
erosion.  It also provides preliminary evidence for an 
alternative, erosional process to extensional unroof-
ing for focused core exhumation, although further 
research is needed to validate both the amount and 
timing of localized erosion.
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