Interrelationships Between Molar Volume and Composition in Garnet

Halle Morrison

Department of Geology, The College of Wooster, Wooster, OH 44691
Faculty Sponsor: Lori Bettison-Varga, The College of Wooster

Zoë Brown

Department of Earth Sciences, Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222

Faculty Sponsor: Jill Singer, Buffalo State College

INTRODUCTION

The chemical composition of garnet in metamorphic rocks provides an invaluable tool to petrologists studying various conditions of metamorphism. The garnet mineral structure is a vast storehouse of many different elements, all of which have an effect on its properties. All of the major components in garnet can be easily measured, except for Fe³⁺ and Fe²⁺; only total iron can be determined by traditional microanalytical methods. Only with difficulty and/or time-consuming bulk analytical methods can Fe³⁺ be measured. As a result, the relationships between Fe³⁺ and unit cell volumes in garnet are poorly understood. The purpose of this study is to investigate the relationships between unit cell volumes of garnets and Fe³⁺ concentration, either measured or calculated.

ANALYTICAL METHODS

The Adirondack Mountains proved to be a good source in which to sample a variety of garnets and garnetiferous rocks with varying chemical compositions and physical properties. All garnets sampled were isolated from rocks collected in Adirondack Highland localities. Garnet localities at the Gore Mountain and Willsboro Wollastonite mines provided material for eight of the samples presented here, as they yielded excellent garnet crystals. All locatities are shown on Figure 1.

From a collection of 13 samples, garnet was separated from the parent rock with the aid of a dissecting microscope and isolated for analysis. The garnets were pulverized, prepared by mixing with isopropyl alcohol, and placed on a microscope slide for x-ray diffraction to determine unit cell volumes. Grain mounts of the garnets were prepared by fastening the grains to a common microscope slide with epoxy glue and polished. The garnets were analyzed for major-element compositions (Table 1) using both SEM/EDS and XANES techniques. X-ray diffraction powder patterns were obtained with a Scintag XDS 2000 x-ray diffractometer with a scan time of one °/minute (total scan time of 68 minutes). Mineralogic compositions we determined with the Amherst College scanning electron microscope equipped with an EDS spectrometer, and the synchrotron X-ray microprobe to collect XANES spectra (beamline X26A, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York).

Data collected in this study were combined with additional data from various sources contained in Deer et al (1961). These data were chosen on the basis of analysis for unit cell length, FeO and Fe₂O₃, SiO₂, Al₂O₃, MgO, MnO, CaO, and no other oxides >0.1 wt. %. The resultant data set contains garnets with a wide range of compositions. Calculated cell volumes were obtained by multiplying mole percent compositions of each of the five garnet end-members (andradite, almandine, grossular, pyrope, and spessartine) by the cube of the a axis length, assuming ideal end-member mixing. "Misfit" was defined as the difference between the calculated and measured cell volume of each sample. Distinctions were made between the entire data set and that portion taken solely from the literature (Table 2).

PREDICTION OF UNIT CELL VOLUMES FROM MAJOR-ELEMENT COMPOSITION

Four methods of calculating unit cell volume were tested (Table 2):

- 1. Using Fe^{3+} measured from wet chemistry or other techniques, including XANES. Average Misfit of the unit cell volumes was initially calculated using a=12.056 Å (Deer et al., 1961) -- a common value used in molar volume calculations for the andradite component. Misfit between measured and calculated molar volume was 2.194 ± 10.797 Å³. Next, Misfit was recalculated using a=12.061Å -- the value measured for the end-member andradite standard used at Brookhaven National Lab; Misfit was reduced to 1.952 ± 10.669 Å³. Finally, the value of a for andradite that would correspond to zero Misfit was calculated to be 12.1012 Å, suggesting that the actual unit cell length commonly reported in literature is too low and must be adjusted.
 - 2. Assuming all iron present is Fe²⁺. Average misfit between measured and calculated unit cell volumes

Table 2: SEM/EDS compositional data with Fe $^{3+}/\Sigma$ Fe determined by SmX

AK97:	19-2	19-7	19-28	19-29	27-22*	27-24	27-35	27-41	27-43	27-44
	fayalite	срх	срх	срх	hnbd	opx	biotit	garnet	hnbd	hnbd
Wt % oxide	•	•	•	•		_		_		
SiO ₂	28.79	47.09	49.31	49.40	40.41	50.87	36.09	38.65	40.52	41.55
Al_2O_3	0.03	0.57	0.89	0.80	13.30	2.12	14.18	21.49	13.49	13.55
TiO ₂	0.00	0.03	0.22	0.18	3.27	0.03	4.66	0.02	3.36	3.11
MgO		0.94	1.03	1.16	9.81	19.60	12.42	6.47	9.59	10.56
FeO	0.44 64.50	25.83	24.43	23.30	12.82	21.42	14.68	23.95	12.93	13.07
Fe ₂ O ₃	3.77	2.67	4.98	6.48	2.42	3.88	2.66	3.98	2.74	2.17
MnO	1.50	0.46	0.58	0.52	0.09	0.27	0.03	1.02	0.06	0.07
CaO	0.00	19.07	19.13	19.39	10.95	0.30	0.04	4.88	10.91	10.77
Na ₂ O	0.44	0.89	1.19	0.62	2.73	0.10	0.00	0.06	2.33	2.50
	0.03	0.00	0.04	0.00	1.07	0.02	9.77	0.06	1.12	1.10
K ₂ O	0.03	0.00	0.00	0.00	0.00	0.02	0.23	0.00	0.00	0.00
BaO	0.00	0.14	0.00	0.00	0.00	0.00	0.23	0.00	0.18	0.18
CI	99.58	97.74	101.80	101.85	97.09	98.67	94.94	100.56	97.23	98.62
otal	99.30	71.14	101.00	101.65	71.07	70.07	27.27	100.50	71.23	70.02
Stoichiometry	0=4	O=6	O=6	O=6	O=23	O=6	O=22	O=12	O=23	O=23
Si	0.974	1.976	1.967	1.964	6.105	1.935	5.522	2.978	6.110	6.150
Al	0.001	0.028	0.041	0.037	2.367	0.095	2.556	1.952	2.399	2.365
Гі	0.000	0.001	0.007	0.005	0.372	0.001	0.536	0.001	0.380	0.346
Иg	0.023	0.059	0.061	0.069	2.210	1.112	2.832	0.744	2.156	2.331
ieŽ+	1.803	0.876	0.766	0.716	1.519	0.643	1.768	1.463	1.520	1.528
₹e3+	0.095	0.081	0.141	0.179	0.258	0.105	0.288	0.219	0.289	0.228
∕in	0.042	0.017	0.020	0.018	0.012	0.009	0.004	0.066	0.008	0.008
Ça 💮	0.000	0.858	0.818	0.825	1.773	0.012	0.007	0.402	1.762	1.708
√a	0.029	0.072	0.092	0.048	0.799	0.007	0.000	0.008	0.680	0.716
ζ	0.001	0.000	0.002	0.000	0.206	0.001	1.908	0.006	0.216	0.208
3a	0.000	0.002	0.000	0.000	0.000	0.001	0.014	0.000	0.000	0.000
	0.006	0.004	0.000	0.001	0.073	0.000	0.060	0.000	0.059	0.057
otal	2.973	3.974	3.915	3.862	15.693	3.920	15.495	7.839	15.580	15.643
Fe3+/∑Fe	0.05	0.09	0.16	0.20	0.15	0.14	0.14	0.13	0.16	0.13
	Table 3:	SEM/ED	S compo	sitional d	lata for	points w	ith no a	vailable	SmX data	a
AK97:	19-15	19-17	19-18	19-19	19-20	19-21	27-23	27-36		
Mineral										
	albite	k-spar	hnbd	albite	albite		plag	piag		
wt % oxide	albite	k-spar		albite	albite	k-spar	plag	plag		
	albite 64.94	k-spar 66.74	hnbd 39.31				plag 57.72	ріад 57.93		
SiO ₂	64.94	66.74	39.31	albite 68.10	albite 66.55	k-spar 63.89	57.72			
SiO ₂ Al ₂ O ₃	64.94 19.25	66.74 18.34	39.31 7.99	albite 68.10 20.42	albite 66.55 18.72	k-spar 63.89 17.57	57.72 25.83	57.93 25.42		
SiO ₂ Al ₂ O ₃ FiO ₂	64.94 19.25 0.00	66.74 18.34 0.00	39.31 7.99 2.24	albite 68.10 20.42 0.05	albite 66.55 18.72 0.00	k-spar 63.89 17.57 0.00	57.72 25.83 0.03	57.93 25.42 0.06		
SiO ₂ Al ₂ O ₃ TiO ₂ MgO	64.94 19.25 0.00 0.00	66.74 18.34 0.00 0.00	39.31 7.99 2.24 0.96	albite 68.10 20.42 0.05 0.00	albite 66.55 18.72 0.00 0.00	k-spar 63.89 17.57 0.00 0.00	57.72 25.83 0.03 0.00	57.93 25.42 0.06 0.00		
SiO ₂ Al ₂ O ₃ TiO ₂ MgO TeO	64.94 19.25 0.00 0.00 0.27	66.74 18.34 0.00 0.00 0.37	39.31 7.99 2.24 0.96 33.61	albite 68.10 20.42 0.05 0.00 0.32	albite 66.55 18.72 0.00 0.00 0.17	k-spar 63.89 17.57 0.00 0.00 0.11	57.72 25.83 0.03 0.00 0.01	57.93 25.42 0.06 0.00 0.03		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO FeO MnO	64.94 19.25 0.00 0.00 0.27 0.03	66.74 18.34 0.00 0.00 0.37 0.00	39.31 7.99 2.24 0.96 33.61 0.36	albite 68.10 20.42 0.05 0.00 0.32 0.00	albite 66.55 18.72 0.00 0.00 0.17 0.04	k-spar 63.89 17.57 0.00 0.00 0.11 0.00	57.72 25.83 0.03 0.00 0.01 0.00	57.93 25.42 0.06 0.00 0.03 0.00		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO FeO MnO CaO	64.94 19.25 0.00 0.00 0.27 0.03 1.21	66.74 18.34 0.00 0.00 0.37 0.00 0.06	39.31 7.99 2.24 0.96 33.61 0.36 9.89	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.00	57.72 25.83 0.03 0.00 0.01 0.00 8.07	57.93 25.42 0.06 0.00 0.03 0.00 7.92		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO GeO MnO CaO Na ₂ O	64.94 19.25 0.00 0.00 0.27 0.03 1.21 10.80	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.00 0.62	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO FeO MnO CaO Na ₂ O K ₂ O	64.94 19.25 0.00 0.00 0.27 0.03 1.21 10.80 0.09	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.00 0.62 14.92	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17		
SiO ₂ Al ₂ O ₃ FiO ₂ AgO GeO AnO CaO Na ₂ O SaO	64.94 19.25 0.00 0.00 0.27 0.03 1.21 10.80 0.09 0.00	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO MgO MnO CaO Na ₂ O SaO SaO CI	64.94 19.25 0.00 0.00 0.27 0.03 1.21 10.80 0.09 0.00	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03	k-spar 63.89 17.57 0.00 0.11 0.00 0.62 14.92 0.04 0.00	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00		
SiO ₂ Al ₂ O ₃ FiO ₂ AlgO AgO AnO CaO Na ₂ O SaO CaO CaO	64.94 19.25 0.00 0.00 0.27 0.03 1.21 10.80 0.09 0.00	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO FeO MnO CaO Na ₂ O SaO Cl Otal	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO MnO CaO Na ₂ O SaO Cl otal Stoichiometry	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 O=8	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79		
SiO ₂ Al ₂ O ₃ FiO ₂ AgO AmO	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 O=8 2.956	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8 3.014	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31 0=23 6.507	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8 2.948	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8 3.006	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14 O=8 3.028	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59 O=8 2.620	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79 O=8 2.631		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO FeO MnO CaO Na ₂ O SaO Cl otal Stoichiometry Si AI	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 O=8 2.956 1.033	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8 3.014 0.976	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31 O=23 6.507 1.558	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8 2.948 1.042	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8 3.006 0.997	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79		
SiO ₂ Al ₂ O ₃ TiO ₂ AlgO AgO AnO CaO Na ₂ O SaO Cl Otal Stoichiometry Si Al	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 O=8 2.956 1.033 0.000	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8 3.014 0.976 0.000	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31 0=23 6.507 1.558 0.278	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8 2.948 1.042 0.002	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8 3.006 0.997 0.000	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14 O=8 3.028 0.981	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59 0=8 2.620 1.382	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79 O=8 2.631 1.361		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO FeO MnO CaO Na ₂ O SaO Cl otal Stoichiometry Si Al Fi Mg	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 C=8 2.956 1.033 0.000 0.000	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8 3.014 0.976 0.000 0.000	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31 0=23 6.507 1.558 0.278 0.237	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8 2.948 1.042 0.002 0.000	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8 3.006 0.997 0.000 0.000	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14 O=8 3.028 0.981 0.000	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59 0=8 2.620 1.382 0.001	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79 O=8 2.631 1.361 0.002 0.000 0.001		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO FeO MnO CaO Na ₂ O K ₂ O BaO Cl otal Stoichiometry Si Al Fi Mg Fe	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 O=8 2.956 1.033 0.000 0.000 0.000	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8 3.014 0.976 0.000 0.000 0.014	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31 O=23 6.507 1.558 0.278 0.237 4.652	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8 2.948 1.042 0.002 0.000 0.011	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8 3.006 0.997 0.000	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14 O=8 3.028 0.981 0.000 0.000	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59 O=8 2.620 1.382 0.001 0.000 0.000 0.000	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79 0=8 2.631 1.361 0.002 0.000		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO FeO MnO CaO Na ₂ O K ₂ O BaO Cl otal Stoichiometry Si AI Fi Mg Fe Mn	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 O=8 2.956 1.033 0.000 0.000 0.010 0.001	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8 3.014 0.976 0.000 0.000	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31 0=23 6.507 1.558 0.278 0.237 4.652 0.050	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8 2.948 1.042 0.002 0.000 0.011 0.000 0.014	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8 3.006 0.997 0.000 0.000 0.000 0.000 0.000 0.0002 0.023	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14 O=8 3.028 0.981 0.000 0.004	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59 0=8 2.620 1.382 0.001 0.000 0.000	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79 0=8 2.631 1.361 0.002 0.000 0.001 0.000 0.385		
SiO ₂ Al ₂ O ₃ FiO ₂ MgO FeO MnO CaO Na ₂ O K ₂ O BaO Cl otal Stoichiometry Si AI Fi Mg Fe Mn Ca	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 O=8 2.956 1.033 0.000 0.000 0.010 0.001 0.059	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8 3.014 0.976 0.000 0.000 0.014 0.000 0.003	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31 O=23 6.507 1.558 0.278 0.237 4.652	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8 2.948 1.042 0.002 0.000 0.011	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8 3.006 0.997 0.000 0.000 0.007 0.002	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14 O=8 3.028 0.981 0.000 0.000 0.004 0.000 0.0057	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59 O=8 2.620 1.382 0.001 0.000 0.000 0.000 0.392 0.595	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79 0=8 2.631 1.361 0.002 0.000 0.001 0.001 0.003 5.638		
SiO ₂ Al ₂ O ₃ TiO ₂ MgO FeO MnO CaO Na ₂ O BaO Cl total Stoichiometry Si Al Ti Mg Fe Mn Ca Mn	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 O=8 2.956 1.033 0.000 0.000 0.010 0.001 0.059 0.953	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8 3.014 0.976 0.000 0.004 0.000	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31 0=23 6.507 1.558 0.278 0.237 4.652 0.050 1.753	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8 2.948 1.042 0.002 0.000 0.011 0.000 0.011 0.000 0.049 0.973 0.003	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8 3.006 0.997 0.000 0.007 0.002 0.002 0.003 0.966 0.005	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14 O=8 3.028 0.981 0.000 0.000 0.004 0.000 0.004 0.000 0.0057 0.902	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59 O=8 2.620 1.382 0.001 0.000 0.000 0.000 0.392 0.595 0.008	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79 0=8 2.631 1.361 0.002 0.000 0.001 0.001 0.000 0.038 0.000		
TiO ₂ MgO FeO MnO CaO	64.94 19.25 0.00 0.27 0.03 1.21 10.80 0.09 0.00 96.61 O=8 2.956 1.033 0.000 0.000 0.010 0.001 0.059	66.74 18.34 0.00 0.00 0.37 0.00 0.06 1.06 15.46 0.24 0.00 102.26 O=8 3.014 0.976 0.000 0.000 0.014 0.000 0.003 0.092	39.31 7.99 2.24 0.96 33.61 0.36 9.89 1.76 1.70 0.00 0.51 98.31 0=23 6.507 1.558 0.278 0.237 4.652 0.050 1.753 0.566	albite 68.10 20.42 0.05 0.00 0.32 0.00 1.07 11.59 0.06 0.01 0.00 101.62 O=8 2.948 1.042 0.002 0.000 0.011 0.000 0.049 0.973	albite 66.55 18.72 0.00 0.00 0.17 0.04 0.48 11.02 0.08 0.00 0.03 97.10 O=8 3.006 0.997 0.000 0.000 0.000 0.000 0.002 0.023 0.966	k-spar 63.89 17.57 0.00 0.00 0.11 0.00 0.62 14.92 0.04 0.00 97.14 O=8 3.028 0.981 0.000 0.000 0.004 0.000 0.0057	57.72 25.83 0.03 0.00 0.01 0.00 8.07 6.76 0.14 0.03 0.00 98.59 O=8 2.620 1.382 0.001 0.000 0.000 0.000 0.392 0.595	57.93 25.42 0.06 0.00 0.03 0.00 7.92 7.24 0.17 0.04 0.00 98.79 0=8 2.631 1.361 0.002 0.000 0.001 0.001 0.003 5.638		

^{*} Percent Fe³⁺ for hornblende AK9727-22 was estimated from average of percent Fe³⁺ in AK9727-43 and AK9727-44

0.000 0.000 5.028

0.186 16.145

0.000 5.017

CI

0.000 4.993

0.003 5.009

0.001 0.000 4.973

0.001 0.000 5.029

0.001 0.000 4.999 was calculated to be 18.889±39.365 Å³. This extraordinarily high misfit illustrates the necessity of considering the role of Fe³⁺ in any analysis. Clearly it must not be ignored.

- 3. Calculating Fe^{3+} assuming all Fe^{3+} substitutes for Al in the octahedral site of the garnet structure (i.e. the $Fe^{3+}=2.0$ -Al method). Average Misfit of the unit cell volumes was calculated to be 2.600 ± 11.302 Å³ and 2.363 ± 11.192 Å³, using a=12.056 and a=12.061 respectively. In order to make the average Misfit equal to zero, the unit cell length had to be increased to 12.1107Å.
- 4. Calculations using the method of Droop (1987) method assuming the sum of all the cations equals 8.0. Average misfit of the unit cell volumes was -1.858 \pm 11.182 Å³ and -2.196 \pm 11.039 Å³, again using a= 12.056Å and a= 12.061Å, respectively. In order to make the average Misfit equal to zero, the a unit cell edge length of andradite had to be decreased to 12.0285 Å.

INTERPRETATION

The magnitude of the Misfit value in each of the calculations just described reflects the accuracy of the preditions of unit cell volumes by the various methods. The high Misfit produced when ignoring Fe³⁺ is indicative of the importance of measuring or calculating Fe³⁺ in order to obtain an accurate analysis. Similar values of Misfit are obtained by calculating or measuring Fe³⁺. The relatively small Misfit between calculated and measured unit cell volume in these instances suggests that molar volume of garnet can be accurately predicted without even measuring Fe³⁺ (Table 2).

PREDICTION OF Fe3+ CONCENTRATION FROM MEASURED UNIT CELL VOLUME

Can this reasoning be turned around to allow determination of the concentration of Fe³⁺ based only on measured unit cell volume of a sample with an unknown composition? Several plots were produced in an attempt to answer this question (Figures 2 and 3). Trends were relatively difficult to identify, which leads to the conclusion that Fe³⁺ cannot be routinely calculated based solely on measured unit cell volumes.

However, the presence of Fe³⁺ can be *confirmed* if the unit cell volume of garnet is greater than that of grossular end-member garnet. This occurs because andradite, or Fe³⁺ garnet, has the highest unit cell volume of any of the garnet end-members, and therefore any garnet sample with molar volume between that of grossular and andradite reflects changing Fe³⁺ content only. This is assuming, of course, that the sample contains no trivalent atoms other than Al³⁺ in large quantities. This relationship can be roughly described by the equation y=mx+b.

REFERENCES CITED

- Deer, W. A., Howie, R. A., Zussman, J. (1961)
 Orthosilicates: Rock -Forming
 minerals. v. 1A, London: Longman
 Group, pp. 468-698.
- Bajt, S., Sutton, S. R., Delaney, J. S. (1994)
 Microanalysis of iron oxidation states
 in silicates and oxides usingx-ray
 absorption near-edge structure
 (XANES). Geochim. Cosmochim.
 Acta v. 58, pp. 5209-14.
- Droop, G. T. R. (1987) A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, v. 51, pp. 431-5.
- Dyar, M. D. (1984) Precision and interlaboratory reproducibility of measurements of the Moessbauer effect in minerals. American Mineralogist, v. 69, no. 11-12, pp. 1127-44.
- Skinner, Brian J. (1956) Physical properties of end-members of the garnet group. American Mineralogist, v. 41, no. 5-6, pp. 428-36.

Figure 1. Approximate localities of Adirondack Highland garnets.

Table 1. Garnet compositional data.

	AK97-2AG	AK97-2AR	AK97-2B	AK97-3B	AK97-8A	AK97-9B	AK97-23
SiO_2	39.62	40.16	39.55	38.29	39.46	38.85	38.26
Al_2O_3	21.83	22.34	22.24	20.88	21.44	18.46	20.84
TiO ₂	0.00	0.00	0.00	0.00	0.00	0.46	0.00
FeO	9.71	19.26	12.11	26.44	24.05	2.71	24.26
Fe ₂ O ₃	11.32	0.66	10.15	1.71	1.71	7.37	2.67
MgO	10.67	10.96	10.16	4.38	10.23	0.57	5.19
MnO	0.38	0.32	0.29	1.00	0.75	0.66	1.06
CaO	6.62	6.76	6.60	7.72	1.85	30.96	6.76
Total	100.15	100.46	101.10	100.42	99.49	100.04	99.04
Fe ³⁺ /∑Fe*	0.51	0.03	0.43	0.06	0.06	0.71	0.09
Fe3+/∑Fe†	0.42	0.00	0.28	0.00	0.00	0.76	0.00
Cations per twelv	e oxygen formu	la unit					
Si	2.935	3.002	2.921	3.000	3.021	2.883	3.010
Al	1.906	1.968	1.936	1.928	1.935	1.614	1.933
Ti	0.000	0.000	0.000	0.000	0.000	0.026	0.000
Fe ²⁺	0.602	1.204	0.748	1.732	1.540	0.579	1.596
Fe ³⁺	0.626	0.037	0.564	0.101	0.098	0.411	0.158
Mg	1.179	1.222	1.118	0.511	1.168	0.063	0.608
				0.0//	0.040	0.041	0.071
Mn	0.024	0.020	0.018	0.066	0.049		
	0.024 0.526	0.020 0.541	0.018 0.523	0.066	0.049	2.461	0.569
Mn Ca	0.526	0.541	0.523	0.648	0.151	2.461	
Mn Ca	0.526	0.541		0.648			
Mn Ca Si0 ₂	0.526 AK97-27 Al 38.64	0.541 K97-29 A 37.46	0.523 -32-W 39.83	0.648 HE-1 HE-1 H	0.151 IRM-1 38.29	2.461 RJN-1 39.18	
Mn Ca SiO ₂ Al ₂ O ₃	0.526 AK97-27 Al 38.64 21.51	0.541 K97-29 A 37.46 21.14	0.523 -32-W 39.83 18.65	0.648 HE-1 F 38.93 21.00	0.151 HRM-1 38.29 9.15	2.461 RJN-1 39.18 14.13	
Mn Ca SiO_2 Al_2O_3 TiO_2	0.526 AK97-27 Al 38.64 21.51 0.00	0.541 K97-29 A 37.46 21.14 0.00	0.523 -32-W 39.83 18.65 0.30	0.648 HE-1 H 38.93 21.00 0.22	0.151 IRM-1 38.29 9.15 0.56	2.461 RJN-1 39.18 14.13 0.66	
Mn Ca SiO_2 Al_2O_3 TiO_2 FeO	0.526 AK97-27 Al 38.64 21.51 0.00 24.66	0.541 K97-29 A 37.46 21.14 0.00 33.46	0.523 -32-W 39.83 18.65 0.30 1.05	0.648 HE-1 38.93 21.00 0.22 19.61	0.151 HRM-1 38.29 9.15 0.56 5.91	2.461 RJN-1 39.18 14.13 0.66 1.31	
Mn Ca SiO_2 Al_2O_3 TiO_2 FeO Fe_2O_3	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00	0.523 -32-W 39.83 18.65 0.30 1.05 5.71	0.648 HE-1 F 38.93 21.00 0.22 19.61 2.16	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70	
Mn Ca SiO ₂ Al ₂ O ₃ TiO ₂ FeO Fe ₂ O ₃ MgO	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33	0.648 HE-1 F 38.93 21.00 0.22 19.61 2.16 10.26	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19 0.00	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35	
Mn Ca SiO ₂ Al ₂ O ₃ TiO ₂ FeO Fe ₂ O ₃ MgO MnO	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24	0.648 HE-1 H 38.93 21.00 0.22 19.61 2.16 10.26 0.50	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05	
Mn Ca SiO ₂ Al ₂ O ₃ TiO ₂ FeO Fe ₂ O ₃ MgO MnO CaO	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02	0.648 HE-1 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01	0.151 HRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04	
Mn Ca SiO ₂ Al ₂ O ₃ TiO ₂ FeO Fe ₂ O ₃ MgO MnO CaO Total	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13	0.648 HE-1 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01 97.69	0.151 HRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42	
Mn Ca SiO_2 Al_2O_3 TiO_2 FeO Fe_2O_3 MgO MnO CaO $Total$ $Fe3+/\Sigma Fe*$	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64 0.07	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71 0.00	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13 0.83	0.648 HE-1 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01 97.69 0.09	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60 0.65	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42 0.88	
Mn Ca SiO_2 Al_2O_3 TiO_2 FeO Fe_2O_3 MgO MnO CaO $Total$ $Fe3+/\Sigma Fe*$ $Fe3+/\Sigma Fe†$	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64 0.07 0.00	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71 0.00 0.00	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13	0.648 HE-1 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01 97.69	0.151 HRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42	
Mn Ca Si 0_2 Al $_2O_3$ Ti O_2 FeO Fe $_2O_3$ MgO MnO CaO Total Fe $_3+/\Sigma$ Fe* Fe $_3+/\Sigma$ Fe† Cations per twelv	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64 0.07 0.00 re oxygen formu	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71 0.00 0.00 da unit	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13 0.83 0.97	0.648 HE-1 F 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01 97.69 0.09 0.00	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60 0.65 0.66	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42 0.88 1.00	
Mn Ca Si 0_2 Al $_2$ O $_3$ Ti 0_2 FeO Fe $_2$ O $_3$ MgO MnO CaO Total Fe $_3+/\Sigma$ Fe $_7$ Cations per twelv Si	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64 0.07 0.00 re oxygen formu 2.996	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71 0.00 0.00 da unit 2.994	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13 0.83 0.97	0.648 HE-1 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01 97.69 0.09	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60 0.65 0.66 3.078	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42 0.88 1.00 3.021	
Mn Ca SiO_2 Al_2O_3 TiO_2 FeO Fe_2O_3 MgO MnO CaO $Total$ $Fe3+/\Sigma Fe*$ $Cations per twelv Si$ Al	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64 0.07 0.00 re oxygen formu	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71 0.00 0.00 da unit	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13 0.83 0.97	0.648 HE-1 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01 97.69 0.09 0.00 3.009	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60 0.65 0.66	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42 0.88 1.00	
Mn Ca Si 0_2 Al $_2O_3$ Ti O_2 FeO Fe $_2O_3$ MgO MnO CaO Total Fe $_3+/\Sigma$ Fe* Fe $_3+/\Sigma$ Fe† Cations per twelv Si Al Ti	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64 0.07 0.00 re oxygen formu 2.996 1.965	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71 0.00 0.00 da unit 2.994 1.991	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13 0.83 0.97 3.014 1.663	0.648 HE-1 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01 97.69 0.09 0.00 3.009 1.913	0.151 HRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60 0.65 0.66 3.078 0.867	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42 0.88 1.00 3.021 1.284	
Mn Ca Si 0_2 Al $_2O_3$ Ti O_2 FeO Fe $_2O_3$ MgO MnO CaO Total Fe $_3+/\Sigma$ Fe* Fe $_3+/\Sigma$ Fe† Cations per twelv Si Al Ti Fe $_2$ +	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64 0.07 0.00 re oxygen formu 2.996 1.965 0.000	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71 0.00 0.00 da unit 2.994 1.991 0.000	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13 0.83 0.97 3.014 1.663 0.017	0.648 HE-1 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01 97.69 0.09 0.00 3.009 1.913 0.013	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60 0.65 0.66 3.078 0.867 0.034	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42 0.88 1.00 3.021 1.284 0.038	
Mn Ca SiO_2 Al_2O_3 TiO_2 FeO Fe_2O_3 MgO MnO CaO $Total$ $Fe3+/\Sigma Fe*$ $Fe3+/\Sigma Fe†$ Cations per twelv Si Al Ti Fe^2+ Fe^3+	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64 0.07 0.00 re oxygen formu 2.996 1.965 0.000 1.599	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71 0.00 0.00 da unit 2.994 1.991 0.000 2.236	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13 0.83 0.97 3.014 1.663 0.017 0.067	0.648 HE-1	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60 0.65 0.66 3.078 0.867 0.034 0.397	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42 0.88 1.00 3.021 1.284 0.038 0.085	
Mn Ca SiO_2 Al_2O_3 TiO_2 FeO Fe_2O_3 MgO MnO CaO $Total$ $Fe3+/\Sigma Fe*$ $Fe3+/\Sigma Fe†$ Cations per twelv Si Al Ti Fe^2+	0.526 AK97-27 Al 38.64 21.51 0.00 24.66 2.06 7.23 0.84 4.70 99.64 0.07 0.00 re oxygen formu 2.996 1.965 0.000 1.599 0.120	0.541 K97-29 A 37.46 21.14 0.00 33.46 0.00 4.55 1.16 1.94 99.71 0.00 0.00 dla unit 2.994 1.991 0.000 2.236 0.000	0.523 -32-W 39.83 18.65 0.30 1.05 5.71 0.33 0.24 35.02 101.13 0.83 0.97 3.014 1.663 0.017 0.067 0.635	0.648 HE-1 F 38.93 21.00 0.22 19.61 2.16 10.26 0.50 5.01 97.69 0.09 0.00 3.009 1.913 0.013 1.268 0.125	0.151 IRM-1 38.29 9.15 0.56 5.91 12.19 0.00 0.00 34.50 100.60 0.65 0.66 3.078 0.867 0.034 0.397 0.737	2.461 RJN-1 39.18 14.13 0.66 1.31 10.70 0.35 0.05 35.04 101.42 0.88 1.00 3.021 1.284 0.038 0.085 0.621	

^{*} by NMNH calibration (Bajt, et al., 1996). \dagger by Dyar (1984).

Table 2. Misfit Between Calculated and Measured Unit Cell Volume

		Enti	re Data Set	Literature Data Set Only		
Method	a (Å)	Average	Standard Deviation	Average	Standard Deviation	
using measured Fe ³⁺	12.0560	2.194	10.797	4.190	8.255	
NMNH Calibration*	12.0610	1.952	10.669	3.937	8.080	
	12.1012	0.000	10.564			
	12.1382			0.000	10.215	
Garnet Calibration†	12.0560	2.168	10.943	4.190	8.255	
	12.0610	1.927	10.829	3.937	8.080	
	12.1007	0.000	10.822			
	12.1382			0.000	10.215	
assuming no Fe3+	n.a	18.889	39.365	21.858	41,774	
assuming $Fe^{3+} = 2-A1$	12.0560	2.600	11.302	5.077	9.790	
_	12.0610	2.363	11.192	4.833	9.604	
	12.1107	0.000	11.442			
	12.1593			0.000	12.275	
assuming ∑cations=8	12.0560	-1.858	11.182	0.364	9,395	
Droop (1987) method	12.0610	-2.196	11.039	0.019	9.184	
- · ·	12.0285	0.000	12.319	-		
	12.0613			0.000	9.173	

^{*}NMNH calibration used fayalite-magnetite-hematite method of Bajt *et al.* (1994). †Garnet calibration used 100% Fe²⁺ almandine and 100% Fe³⁺ andradite standards from Dyar (1984).

Figure 2. This plot illustrates that if only x-ray diffraction data were available, measured Fe^{3+} can be predicted only if the measured volume exceeds the unit cell volume for grossular end-member garnet. This relationship is roughly linear and can be described by the equation y=mx+b.

Figure 3. An alternate way of approximating Fe³⁺ content is shown here. This plot illustrates that if only SEM data were available, Fe³⁺ content can be predicted only if the calculated volume exceeds that of grossular. This relationship is roughly linear and can be described by the equation y=mx+b.

Fe³⁺ Partitioning and Geothermometry Among Mafic Silicates in the Carthage-Colton Mylonite Zone, Adirondack Mountains, New York

Sue Young Jin

Department of Geology, Whitman College, Walla Walla, WA 99362

Faculty Sponsor: Dr. John D. Winter, Whitman College

Rachel A. Graham

Department of Geology, Union College, Schenectady, NY 12308 Faculty Sponsor: Dr. George Shaw, Union College

INTRODUCTION

Ferric iron (Fe³⁺) partitioning and geothermometry calculations can reveal useful information about metamorphic conditions such as temperature and pressure. The objective of this project is to measure and understand the distribution of Fe³⁺ among coexisting minerals and the conditions that control it in a ductile shear zone environment. The Diana Complex of the Carthage-Colton Mylonite Zone (CCMZ) in the Adirondack Mountains in northern New York is the particular shear zone analyzed. Samples were taken from inside and outside of a shear zone. We determined Fe³⁺ partitioning among hornblende, clinopyroxene, and biotite. Variations in mineral deformation and Fe³⁺ partitioning were expected because of the temperature difference between the relatively cool shear zone and the area outside.

GEOLOGIC SETTING

The regional geologic history of the Adirondack Mountains can be divided into three major events: the Elzevirian Orogeny (ca. 1350-1200 Ma), the Ottawan Orogeny (ca. 1100-1000 Ma), and a period of renewed metamorphism (ca. 1000 Ma). The Elzevirian Orogeny is characterized by global-scale accretion and is also evidenced in the southwest U.S., Ireland, and Baltica. Global-scale continental collision occurred during the Ottawan Orogeny (McLelland et al. 1996). While both the Adirondack Lowlands and Highlands experienced peak metamorphism during the Ottawan Orogeny, granulite facies metamorphism was restricted to the Highlands as the Lowlands cooled, ca. 1000 Ma (van der Pluijm et al. 1994).

The Grenville Orogen is located primarily in southeastern Canada and extends south into northern New York State. The southern part of the orogen is divided into the Gneiss belt, the Metasedimentary belt, and the Granulite belt on the basis of lithologic, metamorphic, structural, and geophysical contrasts. The Metasedimentary belt, which makes up the Adirondack Lowlands, is dominated by marbles, metasedimentary rocks, and metavolcanic rocks of greenschist to granulite facies. The Granulite belt, which makes up the Adirondack Highlands, is characterized by meta-igneous rocks of upper amphibolite to granulite facies. These two belts are separated by the CCMZ, an area of normal faulting (van der Pluijm et al., 1994).

MATERIALS AND METHODS

Samples were taken from an outcrop exposing the Diana Complex within the CCMZ (44°08.568' N, 75°19.991' W). One sample (AK97-15B) was taken from within a shear zone, and the second sample (AK97-15A) came from approximately 15 meters west of the shear zone (Figure 1). The outcrop was dominated by diopside, potassium feldspar, plagioclase, quartz, and hornblende. We looked closely for samples that contained biotite in addition to these other minerals, in order to characterize the distribution of Fe³+ among as many coexisting minerals as possible. The examination of thin sections enabled us to document deformation in individual mineral grains using a petrologic microscope. Analyses of mineral composition were conducted using a Scanning Electron Microscope with Energy Dispersive Spectrometer (SEM/EDS) at Amherst College, MA. With the aid of Dr. Jeremy Delaney, an intense X-ray beam was used to measure Fe³+/∑Fe ratios at Brookhaven National Lab's National Synchrotron Light Source (BNL NSLS) in Long Island, NY, using synchrotron micro-XANES (X-ray absorption near-edge structure) spectroscopy (SmX). Temperatures were calculated using hornblende-plagioclase (Holland & Bundy, 1990) and two feldspar (Haselton *et al.*, 1983) thermometers.