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INTRODUCTION

Iceland marks the expression of the Mid-Atlantic 
ridge above sea level and the intersection of this 
ridge with a mantle plume.  This mantle plume, im-
aged by three-dimensional p-wave velocity mod-
els of the mantle, is thought to be responsible for 
Iceland’s physiographic expression above sea level 
(Gudmundsson, 2000). 

Volcanism in Iceland occurs in two types of vol-
canic zones; rift zones and flank zones.  Rift zones 
represent sites of active tectonic rifting and thus 
the intersection of the Mid-Atlantic Ridge with 
Iceland.  Flank zones, by contrast, represent off-
rift zones.  The products of rift zone volcanism are 
generally tholeiitic, whereas the products of flank 
zone volcanism are generally alkalic or transitional 
(Jónasson, 2007).  Both rift and flank zones generate 
central volcanoes.  Central volcanoes produce the 
silicic – intermediate rocks of Iceland in addition 
to large quantities of mafic material (Thordarson & 
Hoskuldsson, 2002). 

Basalt is the dominant product of Icelandic volca-
nism.  Approximately 12% of Icelandic volcanism is 
silicic.  This project seeks to understand the petro-
genesis of the silicic rocks.  2003 and 2004 Iceland 
KECK projects studied rhyolite petrogenesis of early 
(plume centered) and late (off-center, nearly aban-
doned) phases of the Skagi-Snaefellsnes rift.  This 
rift was initiated 15 Ma and abandoned around 7 
Ma.  The results of their findings were equivocal.  
Major and trace element trends were found to be 
consistent with fractional crystallization and magma 
mixing trends were also observed. 

To further the study of the silicic volcanics in the 
area and to add an intermediate location in the 

paleorift history, the 2007 KECK project explored 
a transitional volcanic center along the abandoned 
Skagi-Snaefellsnes rift in the Westfjords of north-
west Iceland.  Using petrography and geochemistry, 
this project seeks to elucidate the mechanisms of 
rhyolite petrogenesis in Iceland’s volcanic environ-
ment.  The 2007 KECK Iceland data will also be 
examined in the context of the 2003 and 2004 KECK 
projects with the aim of working toward a deeper 
understanding of the relationship between rift drift 
and magma evolution in Iceland’s dynamic tectonic 
environment. 

METHODS

Fieldwork was conducted over a four-week period 
during the summer of 2007.  Hand-sample lithol-
ogy and field relations were used to characterize 
the volcanic stratigraphy and delineate distinct 
units.  Thin sections of 25 samples were made by 
Amherst College and examined with a petrographic 
microscope.  Also at Amherst, five thin sections 
were studied with a Zeiss EVO50 scanning elec-
tron microscope (SEM).  Quantitative analyses of 
the minerals in these samples were performed with 
an Oxford INCA-Energy Dispersive Spectrometer 
(EDS).  Clean chips of 19 samples, selected to char-
acterize intra-unit as well as unit-to-unit variation, 
were sent for complete geochemical analysis by XRF 
and ICP-MS at Washington State University’s Geo-
Analytical Labs. 

RESULTS 

Unit Relations

Seven units of lava flows and two intrusive bod-
ies were identified in the field and characterized 
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petrographically and geochemically.  Units were 
distinguished based on hand sample lithology and 
field relationships, such as breaks in slope, cross 
cutting relations and superposition.  The following 
chemical names were assigned to the units based on 
geochemical analysis: Unit 1, basalt; Unit 2, dacite; 
Unit 3, rhyolite; Unit 4, basaltic andesite to andesite; 
Unit 5, dacite to rhyolite; Unit 6, dacite; Unit 7 basalt 
to basaltic andesite; Intrusive 1, basalt; Intrusive 2, 
dacite.  The following relative ages are hypothesized, 
oldest to youngest: Unit 1, Unit 2 and Unit 3, Unit 
4, Unit 5, Unit 7, Intrusive 1 and Intrusive 2.  Unit 6 
is bracketed between Units 1 and 7, and lies strati-
graphically adjacent to Unit 3 and Unit 4, therefore 
its exact position in the sequence is indeterminate. 

Petrography

A summary of outcrop, hand sample and petro-
graphic characteristics for all units is presented in 
Table 1.  The basalt intrusion has similar phenocryst 
assemblage and textures to other basalts, but differs 
in groundmass and grain size, likely due to its intru-
sive character.  The dacite intrusion contains 10-15% 
glass, 5% phenocrysts with plagioclase > clinopyrox-
ene and Ti-Fe oxides in a cryptocrystalline, nearly 
vitric matrix, and plagioclase laths and phenocrysts 
similar to those found in Unit 3.  Clinopyroxene 

inclusions occur in plagioclase.  Ti-Fe oxides occur 
as inclusions in both plagioclase and clinopyroxene.  

Chemical analyses of minerals were determined by 
EDS for the major phenocryst minerals of 5 samples 
chosen as representative of the range of composi-
tions of the rocks in the area.  Average An content 
ranges from An12 in the rhyolite to An57 in the 
basaltic andestie.  Average Mg# of pyroxenes ranges 
from 62 in the basaltic andesite to 3 in the rhyolite.  
The pyroxenes in these rocks are coexisting pigeon-
ites and augites (Robinson, 1980).  Anomalously, the 
feldspars in the basalt from Unit 1 average An41 and 
the pyroxenes Mg# 51.  

Geochemistry

Rocks in the seven units range in composition from 
basalt to rhyolite.  The rocks are subalkaline and 
tholeiitic.  A series of Harker variation diagrams 
(Fig. 1) illustrates the behavior of compatible and in-
compatible elements with increasing silica content. 

Samples are enriched relative to both N-type MORB 
and E-type MORB (Fig. 2).  The REE diagram exhib-
its a stacking of similarly patterned lines for basalts 
through rhyolites across units and samples.  Such 
stacking is suggestive of fractionation in this sub-al-

Table 1:  Abbreviated summary of unit characterizations, excluding intrusive bodies.
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kaline data series (Pearce, 1996).  Incompatible ele-
ment spider diagrams (not shown) show negative Sr, 
P and Ti anomalies (Sun & McDonough, 1989).  In 
a plot of Eu/Eu* versus MgO, a negative Eu anomaly 
is observable in the rhyolite and dacite samples (Fig. 
3).

DISCUSSION

Harker variation diagrams (Fig. 1) show Unit 1 to 
be an outlier of the other flows.  Data corroborat-
ing this finding include Mg#; the pyroxene Mg# in 
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Figure 1:  Harker variation diagrams.  Note the different 
compatibilities of major (MgO, CaO, Al2O3) and trace (Sc, Rb) 
elements with increasing silica content.  Symbol Key: Unit 1 
– empty triangles.  Unit 2 – empty square.  Unit 3 – empty dia-
mond.  Unit 4 – empty circles.  Unit 5 – asterisks.  Unit 6 – empty 
five-pointed star.  Unit 7 – empty Greek cross.  Intrusive 1 – filled 
x.  Intrusive 2 – empty x.
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trace element patterns for all samples.  Note the stacking of 
similar patterns.  N-type MORB and E-type MORB presented for 
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the basalt of Unit 1 is 51 whereas the Mg# is 62 in 
Unit 4 basaltic andesites, and 57 in Unit 3 andesite.  
The high magnesian content of the pyroxenes in 
more primitive Unit 1 basalts, as compared to less 
magnesian pyroxenes in more evolved units, pre-
cludes a simple liquid line of decent between Unit 1 
and the other, more evolved units.  The plagioclase 
phenocrysts in this sample of Unit 1 exhibit textural 
disequilibrium and mixing texture.  It is possible 
that recharge of an evolved magma by a more primi-
tive magma occurred.  If true, the lower An plagio-
clase and lower Mg# clinopyroxene may have been 
at equilibrium before injection and began to resorb 
after recharge.  The progression in Mg# among the 
rest of the data, from the most magnesian basaltic 
andesites to the least magnesian rhyolites is consis-
tent with a genetic linkage among those other six 
units. 

The decrease in CaO and Sc with increasing SiO2 
content as shown in the Harker variation diagrams 
(Fig. 1) is consistent with the removal of early form-
ing pyroxene.  In addition to MgO, CaO and Sc, the 
following elements also behaved compatibly with 
increasing silica content: FeO, TiO2, MnO, P2O5, 
Sr and V.  The compatibility of V is consistent with 
titanomagentite fractionation.  As expected, Rb 
behaves incompatibly, increasing in concentration 
with increasing silica content.  In addition to Rb, the 
following elements also behaved incompatibly with 
increasing silica content: Na2O, K2O, Nb, Zr, Hf, Ta, 
REE with the exception of Eu, Ba, U, Rb, Th, Pb and 
Ta.  The variation diagram for Al2O3 (Fig. 1) behaves 
differently; Al2O3 content increases with increasing 
silica content then subsequently decreases.  Early 
clinopyroxene removal from the melt may account 
both for the decrease of CaO and the modest initial 
increase of Al2O3.  The Eu anomalies in the dacite 
and rhyolite samples of Figure 3 suggest plagioclase 
fractionation.  Later plagioclase removal may ac-
count for the continued decrease in CaO and the 
subsequent decrease in Al2O3.

Brophy (2008) has presented a model for distin-
guishing between fractionation of MORB under 
moderate pH2O and partial melting of hydrated 
basalt crust as processes responsible for the origin 

of silicic magmas.  The Brophy model is based on 
liquid SiO2 content controls on REE partition coef-
ficients and posits that these effects are manifest 
in trace element versus SiO2 relationships.  These 
relationships provide a means to distinguish be-
tween fractionation and melting.  In plots of La, Y, 
and Yb versus liquid SiO2 our data were consistent 
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with fractional crystallization (Fig. 4).  A plot of the 
Zr/Hf ratio with increasing La (ppm) (not shown) 
yields a completely horizontal trend, demonstrat-
ing that the ratio of these incompatible elements 
is unchanged with increasing concentration, a 
phenomenon consistent with fractional crystalliza-
tion.  A plot of Rb versus Hf (not shown) presents 
a co-linear relationship consistent with fractional 
crystallization and inconsistent with a partial melt-
ing model of a hydrothermally altered basalt crust 
(Geist et al., 1995).  The stacked arrangement of the 
REE data in Figure 2 is also consistent with fraction-
ation in this sub-alkaline data series (Pearce, 1996).  
The data permit a model of ~65% fractionation from 
the most primitive basalt in this data set to the most 
evolved rhyolite.  Because we do not see a basaltic 
parent in this suite, we stipulate that the fraction-
ation corroborated by the data is from a later stage.

CONCLUSION

Considering the model for extended fractional 
crystallization of MORB under moderate pH2O 
conditions by Brophy (2008) in conjunction with 
the observation that REE trends and the co-linear 
variation of the Rb/Hf ratio are inconsistent with 
a partial melting model of hydrothermally altered 
basalt crust, we conclude that the basaltic andesites 
through rhyolites in this study are related by frac-
tional crystallization.

Taking the above as true we describe the nature of 
the fractionation.  The data permit a model of ~65% 
fractionation from the most primitive samples pres-
ent to the most evolved.  Sc trends are consistent 
with clinopyroxene fractionation.  The negative Eu 
anomaly in the dacites and rhyolites is consistent 
with plagioclase fractionation.  SiO2 enrichment and 
associated TiO2 and V trends are consistent with Ti-
magnetite precipitation. 
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