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INTRODUCTION

This project uses structural data from field measure-
ments and oriented samples to provide insight into the 
formation of the Cheddar Gneiss Dome.  The Ched-
dar Dome is one in a series of five gneiss domes in 
the Harvey Cardiff Domain of the Central Metasedi-
mentary Belt, part of the Mesoproterozoic Grenville 
Province of Ontario.  Gneiss domes are structures 
associated with major orogenic events worldwide.  
Definitions vary, but they are generally recognized 
as circular to oval-shaped bodies consisting of two 
parts: metamorphic-plutonic cores, and a surround-
ing mantle of supracrustal rocks with domical contact 
parallel layering (e.g. Yin, 2004).  The core of the 
Cheddar Dome is composed of meta-alaskite from 
the Methuen granite suite (1250-1240 Ma) (Lumbers 
& Vertolli, 2000; Timmerman et al., 1997).  Rocks 
that mantle the dome consist largely of marble and 
metasedimentary rocks, predomintantly amphibolites 
(Lumbers & Vertolli, 2000). 

A wide variety of gneiss dome formation mecha-
nisms have been proposed, including diapirism due to 
contrasts in physical rock properties, various types of 
faulting, and superposition of multiple folding events.  
The extent of current research has led to the develop-
ment of a classification scheme linking the physical 
characteristics of domes to their mechanism of forma-
tion (Yin, 2004).  However, domes are formed in dy-
namic environments where changing stress and strain 
patterns coalesce to develop their structures.  This 
complicates the process of making conclusions about 
strain paths from the finite strain patterns recorded 
in dome rocks.  Nonetheless, different processes of 
development do correlate with distinctive structural 
geometries.  This study provides an analysis of these 
geometries, and proposes a model for the formation of 
the Cheddar Dome that is consistent with variations in 
the orientation of foliation and lineation.
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METHODS

In order to characterize the structure of the Cheddar 
Dome, two main approaches were taken.  The first 
was to analyze structural measurements of foliation 
and lineation using field techniques, ArcGIS, and ste-
reonet analysis.  The second was to look for sense of 
shear through analysis of thin sections from oriented 
field samples.

Field data and oriented samples were collected dur-
ing a two-week field session in July 2012.  Samples 
were collected from a variety of rock types in both 
the core and mantle to represent the geologic range of 
the dome. Field measurements focused on composi-
tional and tectonic foliations and mineral lineations. 
Twenty-seven samples were taken at fourteen sites.  
Twenty-three of them were made into oriented thin 
sections, cut perpendicular to foliation and parallel 
to mineral lineation, if present.  Seventeen samples 
are from mapped amphibolites areas, three from the 
granitic gneiss core, one from a pegmatite within the 
core, a marble from the mantle, and a biotite schist.  
Thin sections were analyzed for sense of shear.

The structural measurements were collected at 16 
sites during the field session and were mapped using 
ArcGIS and added to a compilation of field data put 
together by Nick Culsahw which included field data 
he collected between 1977-79, as well as data from 
Hewitt (1957) and Culshaw (1981).  His data were 
scanned from a hard copy map and georeferenced.  
A database of structural information was created by 
digitizing lineation and foliation measurements.  For 
the purpose of this study, only his tectonic foliations, 
compositional foliations, mineral stretching linea-
tions, and c-axis orientation of quartz grain measure-
ments were included.  These data show a dominant 
foliation (Fig. 1) and lineation (Fig. 2).  In order to 
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the east.  In the dome core, lineation shows a wider 
range of moderate to shallow plunges to both the east 
and west (Fig. 2). 
	
Figure 3 presents the same foliation data as above, 
but subdivided into seven regions.  In some cases 
there is a significant difference in dip within these 
data sets, reflected in separate maxima on the con-
tour plots.  The central region (region I) shows very 
strong concurrence with the overall foliation trend, 
with foliations dipping moderately to the south-
southeast.  In Figure 3, the region I stereonet is the 
only stereonet to include foliations with dip directions 
between 130-190 degrees.  Moving clockwise around 
the dome from the top center, region II, in the north-
east, has two maxima.  Foliations associated with the 
strongest maximum dip steeply to the northeast, away 
from the dome core.  Sub-horizontal foliations make 
up the second maximum.  Region III contains folia-
tions dipping primarily away from the dome to the 
southeast. The two maxima of region IV demonstrate 
the curvature of the foliation around the domical 
contact, with foliations striking east-northeast, but 
dipping moderately to the north and south.  Region V 
is the southeast side of the dome and most foliation 
here dips moderately to the northwest and towards 
the dome core.  A second maximum is composed of 
mantle foliations of similar strike that dip shallowly 
away from the center of the dome.  The west side 
of the dome shows two distinct zones of foliation.  
Region VI, on the southwest side of the dome, shows 
a foliation dipping moderately to the southwest, away 
from the dome.  Region VII, on the west side of the 
dome, shows two maxima, with foliation dipping 
steeply to the east. In summary, foliation dips both 
towards and away from the dome center in both the 
core and mantle.  Some regions show two maxima 
for foliation orientation, while others show a single 
maximum.  Foliations in the northeast, east, and south 
more consistently show dips away from the dome 
core. Foliations in the north and northwest dip toward 
the core, along with those in region V.

Sense of shear

Although amphibolites in the dome’s mantle show 
strong foliation and lineation defined by composition-
al banding and orientation of amphibole and biotite 

make other structural patterns apparent, the foliations 
within thirty degrees to either side of the dominant 
orientation were removed from data sets.  The dome 
was divided into seven regions based on common 
foliation patterns (I-VII, Fig. 3). All stereographic 
projections were plotted using Stereonet 32 (free 
software maintained by Dr. K. Roeller, available at 
http://www.ruhr-uni-bochum.de/hardrock/downloads.
html) and contoured using cosine sums as the density 
calculation 

RESULTS

Orientations of Foliation and Lineation

Both the Cheddar Dome and its mantle show a wide 
variety of foliation attitudes, with a clear maximum 
striking east-northeast and dipping moderately to the 
southeast (Fig. 1). Lineation in the region trends east 
west.  In the mantle, lineation plunges moderately to 

Figure 1.  Left – stereonet plot of the poles to tectonic 
and compositional foliation in the Cheddar Dome region.  
Right – contoured stereonet showing the dominant attitude 
of the poles.

Figure 2.  Contoured stereonet plots of lineation in the core 
(Left) and mantle (Right).
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grains, they lack a clear sense of shear at the scale of 
hand samples or thin sections.  Instead, most of these 
rocks appear to have statically annealed (Fig. 4).

DISCUSSION

The possible mechanisms for the formation of the 
Cheddar Dome can be narrowed based on geologic 
setting.  Yin’s classification scheme groups mecha-
nisms into three categories, those created by diapir-
ism and contrasts in rock properties, those created by 
faults, and those created by multiple folding events 
(2004).  The Grenville Orogeny has not been associ-
ated with deep-rooted extensional detachment faults, 

nor is the dome within a large transform or strike slip 
zone, and thus this dome is unlikely to be associated 
with these two styles of shear zone.  The most proba-
ble mechanisms are therefore multiple folding events, 
thrust-duplex development, and diapirism. 
	
Multiple phases of folding can superpose to form 
dome shaped exposures (Yin, 2004).  Evidence of at 
least three generations of folding is documented in an 
area west of the domes (Divi & Fyson, 1973).  How-
ever, the axial planes of these folds are too close to 
parallel to form domical shapes, as is expected from 
pulses collisional events.   In order to create domes 
from multiple folding events the axial planes must 

Figure 3.  Structural and geologic map of the cheddar dome showing seven subdivisions accompanied by contoured 
stereonets of the poles to foliation in each region.  For all regions except I these plots exclude foliations striking between 
130-190 degrees (±30° of dominant regional foliation).  (Geology from Ontario Geological Survey).
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gneiss dome. 
	
The Cheddar Dome exhibits a mixture of outward and 
inward dipping foliations that are not radial symmet-
ric about the dome as would be expected in an ideal 
diapir.  Foliations on the northern side of the dome 
(regions I, II, V, and VII) are consistent with a deep 
slice through a well-developed diapir (slice B in Fig. 
5), where foliations dip towards the dome in both the 
core and mantle. The southern portion (regions III, 
IV, and VI) is more consistent with the shallow slice 
(slice A in Fig. 5) where foliations dip outwards in 
both regions.  The current exposure of the Cheddar 
Dome may represent a nonhorizontal slice through 
a diapir, exposing a deeper section to the north and 
a shallower one to the south.  However, the foliation 
patterns clearly relate to the typical southeast dip of 
foliation in the Central Metasedimentary Belt bound-
ary thrust zone (CMBbtz) to the west of the Harvey-
Cardiff Arch (Hanmer 1988; Hanmer and McEachern 
1992). The Cheddar Dome does, however, show a 
lineation that is distinct.  The shallowly-dipping east-
trending lineation (Fig. 2) differs from the southeast-
trending lineation widely reported for the CMBbtz. 
The prominent south-southeast dipping foliation seen 
in the Cheddar Dome most likely resulted from the 
large-scale, regional strain field of the orogenic colli-
sion.  The maximum presented in Figure 1 is within 
thirty degrees of the orientation of the orogeny axis in 
Ontario (Tollo, 2004).  This overprinting could have 
occurred in concurrence with, or after gneiss dome 
formation, as the regional strain field will generally 
be much larger than any local strain field associated 
with dome formation (Yin, 2004).  Lineations within 
and outside the dome indicate stretching in the east-
west direction.  Looking at infinitesimal strain, both 
stretching lineations and foliations tend to form per-
pendicular to the maximum compressive stress.  If the 
region were undergoing pure shear from the compres-
sion of the orogeny, the maximum compressive stress 
remains constant, and the foliations and lineations 
should be aligned with the trend of the orogen.  Thus, 
foliations should be striking at 040, approximately 
the same trend as mineral lineations.  If instead the 
system were formed under simple shear, the foliation 
and lineation direction would rotate with progressive 
amounts of strain.  In the case of the Cheddar Dome, 
the orientation of the orogen is more northerly than 

be closer to orthogonal than are found in the region 
of the Cheddar Dome (Van der Pluijm & Marshak, 
2004). 

Domes associated with thrust-duplex development 
require a roof fault and a basal thrust.  The warped 
roof fault composes the perimeter of the thrusted 
dome area.  No domical-parallel thrust faults have 
been mapped surrounding the Cheddar, making this 
mechanism unlikely.  This process has been postulat-
ed as a plausible mechanism of dome formation, but 
examples in the literature are scarce (Yin, 2004). 

Diapirism is the mechanism for dome formation 
that has been cited elsewhere in the Canadian Gren-
ville (e.g. Gervais et al., 2004).  By this process, 
a density inversion causes lower layers of rock to 
ascend adiabatically through the crust to emplace-
ment.  Planar sections of these frozen diapirs appear 
as gneiss domes.  Analogue models of diapiric flow 
provide insight into expected patterns of lineation and 
foliation produced by this mechanism (Dixon, 1975).  
Different degrees of domical development and cross 
section depth lead to different foliation patterns.  In 
an early stage diapir, necking is not well developed 
and the foliations dip away from the center of the 
diapir at all depths.  As the feature develops, necking 
becomes more intense and foliations and lineations 
begin pointing inwards at greater depths.  Figure 5 
illustrates the expected distortion of foliation and 
development patterns of lineation in a well developed 

Figure 4.  Image of a thin section from amphibolite mantle 
sample demonstrating static annealing.
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the attitude of foliation and lineation.  This suggests 
that there was a component of simple shear present 
during the orogeny. 

The Methuen Granite, which has been mapped as the 
core of the dome, has been dated at 1250-1240 Ma.  
Assuming diapirism as the mechanism of formation, 
domal formation is concurrent with the age of the 
granite. The three proposed metamorphic events tied 
to the orogeny occurred much later, between 1083 and 
1030 Ma (Easton & Kamo, 2011). This suggests that 
dome emplacement occurred and its structural mark-
ers were subsequently altered by the northwestward 
thrusting of the orogenic collision. The strain result-
ing from this later orogenic stress may have rotated 
the dome foliations to give the appearance of different 
cross-section depths.  
	
 The lack of shear sense indicators, despite strong evi-

dence of deformation in the rocks, requires an expla-
nation.  The polygonal shape of the primary mineral 
grains can be explained if dome rocks were retained 
at high temperatures after deformation.  Through the 
processes of static recrystallization and grain bound-
ary area reduction, the internal free energy of the 
system is reduced and deformed grain boundaries 
straighten (Passchier & Trouw, 2005).  The Cheddar 
dome was emplaced into the middle to lower levels 
of the orogeny into crust that was most likely raised 
above the geothermal gradient due to the heat of 
continental collision (Cosca et al., 1995).  Thus it is 
probable that much textural evidence was lost during 
static recrystallization late in the orogenic cycle.  

CONCLUSION

Distinct structural patterns exist in several zones 
of the dome.  These variations in the orientation of 
foliation are consistent with a deep slice through a 
diapir in the north and a shallower slice to the south.   
However, the patterns of the Cheddar Dome are also 
reminiscent of the overprint signature and may still 
be reflecting its influence.  Due to the relative timing 
of the Methuen granite emplacement and the main 
metamorphic events of the orogeny, the overprint sig-
nature was most likely formed after diapir emplace-
ment.  Rotation of foliations from the strain of this 
event may account for the lack of radially symmetric 
foliations and the apparent inconsistency in the depth 
profile of the dome. 
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