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INTRODUCTION
Fractures within rocks form due to differential 
stresses that exceed rock strength. The magnitude 
and orientation of the local stress field depends on 
tectonic setting and influences the extent and direction 
of fracture initiation and propagation. Understanding 
fracture network characteristics and geometries is 
fundamental to answer various geological research 
questions. Studies by Ampuero and Mao (2017) and 
others have shown the importance of understanding 
the geometry and intensity of fracturing at and 
adjacent to faults when evaluating earthquake hazards. 
In addition, fracturing and the resultant porosity 
and permeability of a rock affect fluid flow and the 
potential for geothermal energy transfer (e.g., Siler et 
al., 2018). Furthermore, fracture pattern analysis may 
reveal potential asymmetry of fracture intensity across 
a fault (e.g., Berg and Skar, 2005) and how normal 
faults grow over time (e.g., Nicol et al., 2016).

For this study, I analyzed the fracture pattern of the 
isolated normal fault tip zone of the Spencer Bench 
segment from the Sevier fault using traditional 
geological field methods as well as a relatively new 
approach based on analysis of virtual outcrop models 
built from drone imagery. Both field measurements 
and virtual outcrop data are used to map the scale 
and type of fracturing in the fault core and across 
the adjacent footwall and hanging wall of the fault 
segment. I explore how fracture intensity varies within 
the rock volume adjacent to the tip of a normal fault, 
the difference in fracture network characteristics 
between the hanging wall and footwall, and the 
relationship between fracture patterns and lithology. 

BACKGROUND
Fault Propagation and Fault Damage Zones

Differences in bed contacts, thickness of beds, and 
material properties influence the formation and 
propagation of fractures in sedimentary rocks (e.g., 
Cooke et al., 2000).  Fractures, including faults, 
initiate and propagate when stress surrounding the 
rock exceeds rock strength. The extent of the fracture 
depends on the magnitude and orientation of the local 
stress field. When normal faults propagate laterally 
and accommodate displacement across the fault, 
they often produce a highly deformed fault core and 
a broader volume of rock deformation known as a 
damage zone. Based on their location along the fault, 
damage zones are classified as tip-, wall-, or linking-
damage zones (see Fig. 3 in Surpless, this volume). 
Fault-tip and wall damage zones develop in response 
to fault propagation and displacement, caused by the 
local amplification of stresses parallel to the fault 
plane and in the fault tip regions (e.g., Kim et al., 
2004). Damage zones of normal faults can further be 
divided into inner and outer damage zones developing 
adjacent to the fault (Fig. 1). As the distance from 
the fault core increases, the intensity of fracturing 
decreases to an undamaged rock volume.

Fault Damage Zone Asymmetry

Across a fault, deformation or strain is often 
distributed asymmetrically, resulting in differences 
in damage zone characteristics in the hanging wall 
relative to the footwall (Fig. 1). Along normal faults, 
the hanging-wall damage zone tends to be wider than 
the footwall damage zone (Liao et al., 2020). In a 
study looking at the spatial arrangement of fractures 
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in the damage zone at a segment of the Moab fault 
in southeastern Utah, Berg and Skar (2005) found 
that the hanging-wall damage zone was more than 
three times wider than the footwall damage zone and 
suggest that the stress pattern that occurs during fault 
propagation causes an asymmetric distribution of 
strain.

Constant-length vs Propagating Fault Models

There are two schools of thought on how a normal 
fault’s displacement (D) and map-view trace length 
(L) grow over time (Fig. 1): the propagating fault 
model, also known as the increasing length model or 
isolated fault model, and the constant-length model, 
also known as the coherent fault model (Fig. 1) 
(e.g., Cartwright et al., 1995). The propagating fault 
model suggests that a fault’s D/L ratio stays relatively 
constant over successive fault movements whereas 
the constant-length model suggests that there is an 
initial phase of rapid fault propagation along strike 
followed by a more prolonged period of displacement 
accumulation on faults with near-constant lengths 
(Nicol et al., 2016).

Earlier studies, focused upon map-view geologic 
data, supported the propagating fault model (e.g., 
Cartwright et al., 1995). However, more recent studies 
based on seismic survey data (Walsh et al., 2003), 
comparisons of the thickness versus displacement 
of fault geometric components (fault rock, fault 
zone, breached relay zone, and intact relay zone) of 
a normal fault (Childs et al., 2009), and a study on a 
system of faults at outcrop-scale (Nicol et al., 2016) 
better support the constant-length model. In their 
study of a fault zone in central Texas, Ferrill et al. 
(2011) argue that a constant-length model is more 
consistent with their data and suggest that both fault 
length and damage zone width are established early 
and likely remain relatively constant as displacement 
accumulates.

Sevier Fault Zone

Along the Hurricane and Paunsaugunt normal faults, 
the Sevier-Toroweap normal fault accommodates 
strain across the transition zone between the Colorado 
Plateau to the East and the Basin and Range province 
to the West (e.g., Davis, 1999; Schiefelbein, 2002; 
Surpless and McKeighan, 2022) (see Fig. 1 in 
Surpless, this volume). The Sevier fault is a segmented 
fault that extends ~350 km through Utah and Arizona 
with a strike of ~N30°E and steep 70-85°W dip 
(Davis, 1999; Schiefelbein, 2002). In this study, I 
focus on an isolated normal fault tip near the southern 
end of a complexly faulted zone of the Sevier normal 
fault that is well exposed at the Elkheart Cliffs and the 
southern end of the Red Hollow Canyon by Orderville, 
Utah (Fig. 2 in Surpless, this volume).

METHODS
Field Methods

We conducted fieldwork near Orderville, Utah, 
where there is good exposure of the Spencer Bench 
Fault segment. At locations of interest, we collected 
scanline data to document the primary orientation and 
intensity of fracturing, with the position measured 
perpendicular to the dominant fracture strike. We used 
a Geo Transit Brunton to measure the azimuth and dip 
of each fracture along the scanline and constructed 
stereonets using Stereonet 11 by Allmendinger (2022).

Figure 1. A) Conceptual model for an asymmetrical normal fault 
wall damage zone and its architectural components. Red indicates 
the fault core, dark gray is for the inner damage zone, gray is 
for the outer damage zone, and white marks the undamaged rock. 
The white arrows and blue lines indicate displacement along 
the fault and displaced hypothetical rock units. B) Evolution of 
displacement and length according to the constant-length model 
(left) and propagating fault model (right). Figure A modified from 
Liao et al., (2020). Figure B adapted from Nicol et al., (2016).
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spacing standard deviation (m), position-based 
fracture intensity (FI) (m-1), scanline average FI (m-1), 
and coefficient of variation (CV =σ/μ).

Capturing Imagery with Unmanned-Aerial-Vehicle 
(UAV) Flights

In locations inaccessible by foot, we planned and 
executed a series of unmanned-aerial-vehicle (UAV) 
flights using a Phantom 4 Professional UAV. The 
4K camera attached to the drone recorded video 
imagery of canyon walls and cliff faces across the 
fault network. We documented the spatial extent of 
each drone flight on Google Earth Professional and 
described the content of each video in a field book.

Building virtual outcrop models (VOMs) using 
Structure-from-Motion (SfM) software

We used videos taken by the UAV flights to build 
virtual outcrop models (VOMs) using Agisoft 
Metashape, structure-from-motion (SfM) software 
designed to build 3D outcrop models based on 
overlapping aerial images (Metashape, 2023) (Fig. 2). 
We created 2D orthomosaics from the georeferenced 
VOMs, which we annotated in Metashape. Where best 
exposed, we documented displacement across the fault 
core. We set up virtual scanlines drawn perpendicular 
to fractures, measuring the position of fractures along 
each scanline and conducted statistical analysis on 
the collected scanline data. Values derived include the 
average spacing between fractures (m), the fracture 

Figure 2. Steps for VOM model construction and analysis. Workflow 
to construct a spatially accurate 3D outcrop model using Agisoft 
Metashape. Figure modified from Surpless and McKeighan, 2022.

Figure 3. Orthomosaic of Model 3 where the Spencer Bench segment can be seen passing through the model. Yellow dashed lines show 
the suggested locations where the Spencer Bench segment passes through. White lines trace the fractures observed. White horizontal 
lines indicate the location of the scanlines.
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Figure 4. Fault damage zone asymmetry of Model 3 and FI along scanlines. Model 3 shows the Navajo Sandstone across the Spencer 
Bench segment (yellow). Red lines indicate where scanline data were collected.

RESULTS
Field-Based Scanline Analysis

We collected scanline data at 11 locations within 
the fault zone of the Mt. Carmel and Spencer Bench 
segments, focusing on the well-exposed Navajo 
Sandstone. We measured fractures greater than 4 
meters along field scanlines that intersected the strike 
of the fractures. Overall, most fractures strike NE to 
NNE and dip moderately to steeply NW, subparallel 
to the fault segments. The average FI ranged between 
0.19 m-1 and 6.31 m-1.

Fault Damage Zone Asymmetry

Observations from Model 3, at Elkheart Cliffs with 
the Spencer Bench segment located on the SE side of 
the model, support the analysis performed by Liao et 
al., (2020) and Berg and Skar (2005), who suggested 
that wall damage zones display greater widths of both 
inner and outer damage in the hanging wall relative 
to the footwall (Figs. 3 and 4). This asymmetry may 
result from preferential fracture rupture propagation 
caused by footwall-hanging wall differences in local 
stress fields around normal fault planes (e.g., Ampuero 
and Mao, 2017). Our finding is significant given we 
documented damage zone widths based on outcrop 
exposures, unlike Liao et al., (2020), where seismic 
data were used to identify the asymmetry.

Constant-length vs Propagating Fault Models

A comparison of the widths of the footwall damage 
zone of the Mt. Carmel and Spencer Bench segments 
at the same latitude shows near-identical dimensions 
(Fig. 5). However, the displacement across the 
Mt. Carmel segment is approximately 800 meters 
(McKeighan et al., 2019), while the displacement 
across the Spencer Bench segment is only about 2 
meters. This suggests that the two faults at this latitude 
are at different stages of fault propagation and that 

Figure 5. Comparison of the width of the footwall damage zones 
of the Mt. Carmel and Spencer Bench segments (blue) at the same 
latitude. Width measurements are taken perpendicular to the 
fracture orientation from Google Earth Professional.
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the footwall damage zone width is established very 
early in fault propagation. New damage will likely be 
localized in the already established damage zone (e.g., 
Ferrill et al., 2011). In addition, McKeighan et al. 
(2019) identified displacement of 30 meters across the 
Spencer Bench segment approximately 2.5 kilometers 
North of where we measured a displacement of 
only 2 meters in Model 2. This yields a low lateral 
displacement gradient of 0.0112. Together, this 
suggests relatively rapid lateral propagation of the 
Spencer Bench segment with little accumulated 
displacement. These data strongly support the 
constant-length model.
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