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INTRODUCTION

Differential stresses are abundant within the crust and 
lithosphere and result from the tectonic forces that are 
pervasive within these regions.  In the crust, defor-
mation arising from these stresses is usually ductile 
in the middle to lower crust and brittle in the upper 
crust.  In many cases this deformation is localized 
to discrete shear zones rather than being distributed 
throughout the crust.  Localization results from exist-
ing and evolving strength heterogeneities which allow 
strain to be more easily accommodated in certain 
areas. Since strain localization in the form of faults 
and shear zones is abundant throughout the crust, it is 
important to understand how these zones initiate and 
evolve.  

The purpose of this study is to examine an occur-
rence of shear zone localization and document the 
differences between strained and unstrained material 
there.  From these data I will suggest mechanisms by 
which theses rocks have become weaker and strain 
has been localized.  The rocks of interest are from 
an outcrop of the Salerno Creek deformation zone, a 
newly described mylonite zone in the upper part of 
the Central Metasedimentary Belt boundary thrust 
zone (CMBbtz), in the Grenville province of Southern 
Ontario (Easton and Kamo 2011).  This region is an 
ancient exhumed orogen where mid-crustal, upper 
amphibolite facies rocks are exposed at the surface.  
The outcrop that is the focus of my research is a 
finger of an unnamed elongate gabbro body which 
occurs between the Trooper Lake Gabbro and the 
Anstruther gneiss complex (Easton and Kamo 2011).  
It is part of a string of gabbroic bodies that may define 
the base of the Central Metasedimentary Belt (Han-
mer and McEachern 1992).  Using electron back-
scatter diffraction (EBSD), wavelength dispersive 
spectroscopy (WDS) and optical microscopy, I have 
documented characteristics of low to high strain rocks 
that give clues to the mechanisms of strain localiza-
tion.  

HETEROGENEOUS DEFORMATION OF GABBROIC ROCKS
calvin mako, University of Maine
Research Advisor:  Christopher Gerbi
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GEOLOGIC SETTING AND METHODS

I have analyzed samples from a ~25m long outcrop of 
anorthositic gabbro, which is exposed as a road cut on 
route 507 near Gooderham, Ontario.  The outcrop has 
many anastomosing meter-scale shear zones adjacent 
to rocks that show no visible strain (Fig. 1A).  Though 
other outcrops of the Salerno Creek deformation zone 
are mylonitic this outcrop does not exhibit any my-
lonites.  These rocks have a primarily plagioclase and 
hornblende mineralogy, with minor biotite (0-5%) and 
accessory pyrite, tourmaline, calcite and titanite.  

I collected samples from various parts of the outcrop 
that exhibited high, moderate and low strain.  Thin 
sections were cut parallel to lineation and perpendicu-
lar to foliation and prepared for optical microscopy 
(unpolished) as well as electron microscopy (pol-
ished).  Using EBSD, I analyzed two to three small 
areas on each of six polished thin sections to charac-
terize grain size, crystallographic preferred orientation 
(CPO) and shape preferred orientation (SPO).  WDS 
measurements were taken on various hornblende and 
plagioclase grains throughout each polished section 
with attention to differences in texture and structure.  
A summary of the characteristics for each strain level 
is presented in Table 1.

RESULTS

Textures

On the hand sample scale, low strain samples exhibit 
igneous textures with no foliation or lineation. High 
strain samples show smaller grain sizes and strong 
gneissic foliation defined by compositional banding 
of alternating hornblende-rich and plagioclase-rich 
layers (Fig. 1A).  At the optical microscope scale, the 
major difference between high and low strain rocks is 
the proportion of recrystallized and grain size reduced 
plagioclase and hornblende in the sample.  The low 
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Figure 1. Textures of the analyzed rocks at outcrop and thin section scale.  (A) An example of outcrop strain heterogeneity, 
with a dotted line dividing strained rock on right from rock showing no visible strain on the left.  (B) Igneous texture from 
sample 025cy (low strain).  (C) A small patch of fine grained recrystallized material in a high strain sample (025by).  (D) 
Typical appearance of high strain samples with fine grained matrix and uncommon large plagioclase grains (white ar-
rows).  Crossed polarized light.  (E) Typical appearance of moderately strained samples with more common large plagio-
clase grains and an example of plagioclase recrystallization following intergranular fractures (black arrow).  (F) Appar-
ent dismemberment of larger hornblende grains (plane polarized light) in moderately strained rocks. 
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strain rocks have mostly large grains with abundant 
deformation and albite twinning and little recrystal-
lization or grains size reduction (Fig. 1B). Low strain 
samples exhibit minimal plagioclase recrystallization 
in small, disconnected patches (Fig. 1C).  

The high strain samples contain plagioclase that is 
fine grained and almost completely recrystallized 
throughout the thin section (Fig. 1D). Large plagio-
clase grains are rare but present in the high strain 
rocks.  In some locations the plagioclase has a core 
and mantle texture with small grains within and 
around the large grains, often in distinct lines that 
may mark intergranular fractures (Fig. 1E).  The mod-
erately strained samples are a combination of the two 
end-member strain types, having large grains as well 
as recrystallized plagioclase and dismembered horn-
blende (Fig. 1E). 

In the recrystallized zones, hornblende generally 
has the appearance of being crushed and smeared 
out (Fig. 1F).  Even in the low strain samples some 
hornblende grains appear broken but with little 
displacement.  In high strain samples hornblende is 
finer grained and disseminated throughout the matrix. 
Hornblende grains are interconnected in some high 
and moderate strain samples, but in other high strain 
samples they are not.  There does not seem to be any 
correlation between hornblende interconnectedness 
and strain.

At all strain levels, smaller recrystallized plagioclase 
grains are generally free of twins and have very clean 
grain interiors, which is in sharp contrast to the large 
grains.  In the case of the fine grained plagioclase and 
the hornblende, grains often meet at triple junctions 
with 120˚ between boundaries.  This is not always 
true and especially not when there are many fine 
grained plagioclase and hornblende crystals close 
together.  In this latter case, crystals that are finer 
grained do not as commonly have 120˚ triple junc-
tions.

Grain Size

Grain size varies greatly between these samples.  In 
the low strain samples both plagioclase and horn-
blende have large grain size, the majority of the 

grains being >500μm in diameter.  In the moderate 
and high strain samples the grain sizes of plagio-
clase and hornblende is reduced, with mean diameter 
around 100-200μm for both.  The difference between 
these domains is that the moderate strain samples 
retain a large proportion of the original, larger grains, 
whereas the high strain rocks consist almost entirely 
of the small, recrystallized grains.    In the high strain 
samples there are significantly fewer large plagio-
clase grains and the grain size of hornblende becomes 
somewhat larger but more irregular between samples.

Crystallographic Orientation

Plagioclase shows little to no CPO at all strain lev-
els.  In low strain rocks the number of plagioclase 
and hornblende grains analyzed is insufficient to have 
statistically significant results.  In high strain samples 
c-axes of plagioclase are very weakly aligned parallel 
to foliation and b-axes are very weakly aligned in a 
plane perpendicular to foliation.  Conversely, horn-
blende exhibits a strong CPO in high and moderate 
strain samples.   C-axes are linearly aligned parallel 
to foliation in the high strain samples and in moder-
ate strain samples c-axes are generally aligned in the 
plane of foliation. Hornblende a-axes are preferen-
tially aligned perpendicular to foliation in high and 
moderate strain samples (more weakly in moderate 
strain) and b-axes have no common alignment.

Shape Preferred Orientation

SPO exists in the high, moderate and low strain 
samples for both hornblende and plagioclase.  For 
hornblende in high strain samples the mode in major 
axis orientation is between 10° and 30° oblique to fo-
liation.  Moderate and low strain samples are similar 
to each other in that both distributions have the same 
general shape for hornblende and two apparent orien-
tation modes, both symmetrically 30° to 50° oblique 
to foliation.  Plagioclase SPO is generally the same 
across strain levels and major axes range from 30° 
to 50° symmetrically about foliation.  In all of these, 
there are very few grains oriented parallel to foliation.  

Mineral Chemistry

Plagioclase and hornblende have variable chemistry 
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High Strain moderate Strain low Strain

Feldspar Peak at 100-200μm Peaks at 100-200μm and 
>500μm >500μm

Hbde
scattered distribution, most 

>200μm
ill-defined peak at 100-

200μm
>500μm and minor peak at 

100-200μm

Feldspar
Very weak c-axis 

alignment in plane of 
foliation

No preferred orientation no preferred orientation

Hbde Strong c-axis lineation, b-
axis perp. to foliation

Strong c-axis alignment in 
foliation plane, b-axis perp. 

to foliation
no preferred orientation

Feldspar Two peaks 30-40˚ oblique 
to foliation, one stronger

Two peaks 30-40˚ oblique 
to foliation

Two peaks 30-40˚ oblique 
to foliation

Hbde Single peak 20-30˚ oblique 
to foliation

Two peaks 20-30˚ oblique 
to foliation

Two well defined peaks 20-
30˚ oblique to foliation

Feldspar 80-85% 65-75% 60-75%

Hbde 15-20% 25-35% 25-40%

Biotite ~5% to absent <5% to absent Not present

Feldspar
An63 to An85, widely spread 

bimodal distribution
An75 to An89, bimodal 

distribution
An78 to An93, unimodal 

distribution

Hbde Moderate silica and alkali 
content, wide distribution

High alkalis and low silica, 
concentrated distribution

Lowest silica and alkali, 
concentrated distribution

Feldspar
Almost entirely 

recrystallized, rare large 
grains

Large grains and 
recrystallized matrix

Almost completely large 
grains, small recrystallized  

patches

Hbde Defines gneissic banding Dismembered and smeared 
out grains

Large, un-dismembered 
grains

T
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Table 1.  Summary of analyzed characteristics organized by strain state. 
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between the different degrees of strain.  Plagioclase 
varies from An63 to An93, and shows a trend towards 
more alkali composition with increasing strain.  High 
strain samples have a broader range of An content 
than do low strain samples. Hornblende does not 
seem to exhibit a chemical trend or evolution relating 
to strain; the high strain samples have intermediate 
alkali and silica contents between moderate and high 
strain samples.  The ranges in hornblende chemistry 
for the different strain levels have very little overlap.  
This is not true of plagioclase which shows significant 
overlap in composition between high, moderate and 
low strain samples.

Mineral Modes

The proportion of hornblende varies from ~17% to 
~35% between the samples and that of plagioclase 
varies from 60% to 85%.  The proportion of horn-
blende in the high strain rocks is generally lower, 
but this may not be representative of all high strain 
rocks (some unanalyzed high strain sections have a 
majority of hornblende).  Biotite is present in the high 
and moderate strain samples it constitutes <5% in all 
cases and is absent in some high strain samples.  Bio-
tite doesn’t appear to be significant in terms of rock 
strength.  

MINERAL DEFORMATION MECHANISMS

We can make several inferences about microstructural 
processes from the above observations.  First, it seems 
that these rocks have had time at depth to undergo 
static recrystallization and recovery.  This is evident 
from the 120° triple junctions observed in small pla-
gioclase grains and in many hornblende grains.  Also 
we can infer from the general appearance of horn-
blende that it has deformed by brittle fracturing and 
grain boundary sliding.  This is supported by previous 
research that shows that hornblende often deforms 
brittlely below temperatures of 650˚C (Berger and 
Stunitz 1996).  The temperatures of metamorphism 
in this region are estimated at approximately 625°C 
(Fowler-Gerace, this volume).
	
Plagioclase has mostly deformed by dislocation creep 
which often seems to initiate along intergranular 
fractures in large plagioclase grains (Fig. 1E).  Dis-

location creep may have occurred through subgrain 
rotation and recrystallization.  However, despite 
microstructural evidence, plagioclase does not exhibit 
the CPO associated with dislocation creep.  It is pos-
sible that as grain size has been reduced, these rocks 
have experienced a switch from grain-size-insensitive 
dislocation creep, to grain-size-sensitive diffusion 
creep.  

WEAKENING MECHANISMS

Various rock weakening mechanisms that can lead to 
shear localization have been proposed over the years 
(White et al. 1980, Kirby 1985), including texture 
related weakening, reaction softening, fluid related 
weakening, melt formation and thermal perturba-
tion.  Given the microstructural analysis that I have 
performed, melt formation can be ruled out from the 
lack of evidence in thin section and improper condi-
tions for formation.  Also, given the small size of 
these shear zones it is unlikely that there was enough 
of a temperature gradient across this space to cause 
localization, thus thermal perturbations are unlikely. 
Reaction related weakening, in the form of metaso-
matism or metamorphic phase changes, is not likely 
to have had an effect because the bulk mineralogy is 
fairly consistent across the strain gradient.
	
The changes that most probably led to weakening in 
these rocks are related to texture.  It is possible, as 
noted above, that a switch from dislocation-domi-
nated creep to diffusion-dominated creep may have 
occurred.  At small grain sizes, diffusion creep can be 
faster than dislocation creep, meaning that if diffusive 
processes dominate the rocks would be weaker, al-
lowing strain to localize.  However, this conclusion is 
inconsistent with the work of De Bresser et al. (2001) 
who suggest that grain size reduction cannot cause a 
switch to diffusive processes because recovery will 
prevent it. 
	
One fundamental question affecting this research 
is: which is weaker- hornblende or plagioclase?  If 
hornblende is acting as the weak phase in these rocks 
whether or not the grains are linked up or isolated will 
affect the weakness of the rock.  But hornblende inter-
connectedness seems unrelated to strain, implying 
that hornblende is not the weaker phase.  Conversely, 
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if grain size reduced areas of plagioclase are truly 
weaker, then whether or not these areas are intercon-
nected could play a role in rock weakening.  In fact, 
in high and moderate strain samples, zones of plagio-
clase are more interconnected and pervasive.  These 
observations suggest that plagioclase is acting as the 
weaker phase and hornblende as the stronger one.  If 
this is the case, hornblende could have experienced 
rigid body rotation to form the CPO that we observe 
in high strain samples.
	
In the Central Metasedimentary Belt and CMBbtz, 
fluids have likely been available (Grittins, 1961 and 
Marshall, this volume) so it is possible that hydrolytic 
weakening has played a role in strain localization.   
The presence of biotite in high and moderate strain 
samples is somewhat suggestive of the presence of 
water in these rocks because it is a hydrous phase.  
Since it appears that fracturing has played a role in 
recrystallization of plagioclase and hornblende, frac-
tures may also have provided a route of entrance for 
fluids to interact with these rocks and weaken them.

CONCLUSION 

This anorthositic gabbro body at the base of the Cen-
tral Metasedimentary Belt has undergone meter-scale 
strain localization.  Low strain rocks have a relict 
igneous texture; more highly strained samples exhibit 
grain size reduction of both hornblende and plagio-
clase.  Plagioclase appears to have been the weaker 
phase during deformation.  For plagioclase grains, 
dislocation creep may have initiated at grain fractures 
and ultimately yielded to diffusion creep.  Hornblende 
has deformed by brittle fracture and appears to have 
been the stronger phase.  A switch from grain-size-in-
sensitive creep to grain-size-sensitive creep in com-
bination with increased interconnection of the weak 
phase (plagioclase) may have caused these rocks to 
weaken locally.  The introduction of fluids, possibly 
through fracturing, could also have resulted in rock 
weakening and shear zone development.  
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