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INTRODUCTION

This project presents a geochemical analysis of Pleis-
tocene volcanic deposits of the Red Cinder Peak 
area of Makushin Volcano, Unalaska Island, AK.  
This analysis aims to understand the petrogenesis of 
the Point Tebenkof Ignimbrite (PTI) and several lava 
flows from the northeast flank of Makushin Volcano 
shown in Figure 1.  Comparison of the ~42 m thick 
ignimbrite to younger Makushin caldera-forming 
events is significant from a hazards point of view 
because it constrains the conditions that have led to 
large, caldera-forming eruptions at Makushin in the 
past, exemplified by the PTI.  Any future eruptions 
of similar magnitude could potentially threaten the 
residents of the nearby town of Unalaska (including 
Dutch Harbor) as well as disrupt air traffic down-
wind of the Aleutian Islands.  Geologically, this 
project is significant because the Holocene eruptive 
history of Makushin Volcano and its satellite vents 
have been well characterized (Nye et al., 1986; Mc-
Connell et al., 1997; Roach, 1997; Bean, 1999; Begét 
et al., 2000), but the Pleistocene eruptive and petro-
genetic history of Makushin is much less studied.
 
Makushin Volcano is a 2,036 m-high, historically 
active stratovolcano in the eastern Aleutian arc on 
Unalaska Island, AK, just west of the ocean-conti-
nent crustal boundary (Nicolaysen and Hazlett, this 
volume).  The Holocene record contains evidence 
for two large, caldera-forming eruptions in addi-
tion to 17 historical eruptions (VEI 1-3), making 
it one of the more historically active volcanoes in 
the Aleutians (Bean, 1999; Begét et al., 2000).  The 
Holocene tephras analyzed in Bean (1999) displayed 
spider diagram patterns suggesting similar evolution 
from similar parental magmas.  Contrastingly, Nye 
et al. (1986) found evidence in a geochemical study 
of 160 Pleistocene-Holocene samples for magma 

mixing, crystal-melt disequilibria, and successive, 
small batches of chemically distinct magmas enter-
ing a shallow magmatic system.  When comparing 
late-Pleistocene to Holocene flank vent cumulates to 
cumulates in lavas derived from magma supplying 
the main Makushin massif, Roach (1997) found that 
flank vent lavas reflected more mafic, monogenetic 
magma chambers whereas the Makushin massif 
lavas reflect a more evolved chamber with chemical 
zoning, multiple reinjections, and many eruptive 
episodes.  These differences in character between 
Holocene and Pleistocene Makushin call for a better 
understanding of the pre-Holocene eruptive history, 
the goal of this project.   

METHODOLOGY
 
Red Cinder Peak and Pt. Tebenkof comprise the 
western wall of Driftwood Bay and Valley (Fig. 2 of 
Nicolaysen and Hazlett, this volume).  Keck col-
league Allie Goldberg and I collected ~ 40 samples 
from a stratigraphic sequence of 12 pre-Holocene 
lava flows and established field relations of these 
deposits (Fig. 1).  At the bottom, the basal contact of 
the Point Tebenkof Ignimbrite, here named, was not 
visible due to beach cobbles.  Lithic, vitric, scoria, 
and pumice samples were collected from various 
levels within the ignimbrite.  Whole rock analyses 
were done at Washington State University accord-
ing to the methods of Johnson et al. (1997) using a 
ThermoARL x-ray fluorescence spectrometer (XRF) 
and an HP4500+ inductively-coupled plasma-mass 
spectrometer (ICP-MS).  Values of δ18O for individ-
ual olivine and plagioclase crystals were measured at 
University of Oregon using laser fluorination (Valley 
et al., 1995).  Pb isotope analysis was conducted at 
the University of British Columbia’s Pacific Centre 
for Isotopic and Geochemical Research using a Nu 
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Plasma multi-collector inductively coupled plasma-
mass spectrometer (MC-ICP-MS) according to the 
methods of Weis et al. (2006).  Analytical preci-
sion at two standard deviations is as follows: XRF 
achieved ±0.09 wt. % for all major elements, ±2.3 
ppm for all trace elements; ICP-MS achieved ±1.07 
ppm for all trace elements except Sr (±10.8 ppm); 
δ18O achieved ±0.14 ‰; and Pb isotopes achieved 
±0.0046. Error bars are left out of all figures except 
those with δ18O based on symbol size relative to 
analytical precision.

RESULTS

STRATIGRAPHY

The feature herein called Red Cinder Peak is labeled 
on maps as Red Cinder Dome, implying that all 
flows are related to such a satellite dome.  Peak is 
used here because the feature is not a volcanic extru-
sive dome but a point resulting from glacial erosion.  
The sampled flows in Figure 1 most likely originated 
from the main vent of Makushin or a buried satellite 
vent. 

The stratigraphy of Red Cinder Peak is subdivided 
into four subsections, based on stratigraphic loca-
tion (Fig. 1).  Section 1 is the ignimbrite at the base 
of the exposure, and section 2 includes the four 
basaltic-andesitic flows directly overlying the PTI.  
Flow BCA is dated at 139 ka (see Idleman, this 
volume).  Sections 3 and 4 are basaltic andesite and 
andesite lava flows whose stratigraphic relation-
ships are obscured by lack of horizontal continuity.  
The top flow of Section 4, EAR, outcrops just below 
glacial till of the last glacial maximum.  
 
The Pt. Tebenkof Ignimbrite is an andesitic, domi-
nantly lapilli ignimbrite which is pumice-poor and 
scoria-rich. The PTI records many distinct eruptive 
phases, and the main phase marks the appearance of 
mingled scoria clasts in which a dark matrix sur-
rounds lighter colored pumice.  The ignimbrite is 
topped with an ~8 m section of co-ignimbrite ashfall 
grading from tan to brick red.  A detailed descrip-
tion of the PTI can be found in Goldberg, this 
volume.

PETROGRAPHY

All lavas contain phenocrysts of dominantly pla-
gioclase+ clinopyroxene ± olivine ± orthopyroxene.  
Sieve textures and zoning in plagioclase crystals are 
prominent in flows above the PTI, but very few sieve 
textures or zoning occur within the ignimbrite’s phe-
nocrysts.  Sieving occurs either in the middle of the 
crystal on the edges, or throughout the crystal.  Cu-
mulophyres of different combinations of plagioclase, 
pyroxene, and occasionally olivine are prevalent in 

Figure 1.  Stratigraphic relationships of Red Cinder Point area.  
The stratigraphic relationships are better exposed in Sections 1 
and 2 compared to Sections 3 and 4.
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the post-ignimbrite flows, while the ignimbrite has 
few cumulophyres and crystals in general.  

GEOCHEMISTRY
 
PTI samples (including lithic, vitric, scoria, and 
pumice samples from different layers) have nor-
malized weight percent oxide abundances of SiO2 
(59.86-61.24), TiO2 (0.97-1.114), Al2O3 (16.26-
16.93), FeO* (7-7.86), MgO (2.11-2.66), CaO 
(5.16-5.98), and K2O (1.16-1.57). The PTI is a 
compositionally homogeneous ignimbrite up to the 
co-ignimbrite ash fall (not sampled). Subsequent 
flows have ranges of SiO2 (49.66-63.72), TiO2 (0.79-
1.29), Al2O3 (15.11-18.87), FeO* (6.11-10.19), MgO 
(1.73-8.99), CaO (4.31-11.89), and K2O (0.63-2.21), 
normalized wt. %. These post-ignimbrite flows dis-

play much more heterogeneity than the ignimbrite.  
All samples except SEB and SEA fall into the tho-
leiitic geochemical field of Miyashiro (1974), which 
agrees with the previous geochemical analyses of 
Makushin (Nye et al., 1986; Bean, 1999). 
Figure 2a-d shows trace element abundances of each 
stratigraphic section using the primitive mantle 
normalization of Sun and McDonough (1989) com-
pared to the same author’s NMORB values and aver-
age DSDP 183 (Plank and Langmuir, 1998).  Nearly 
all samples from this study follow a typical island 
arc pattern, with BCC showing the only noticeable 
variation, including several dips below normal mid-
ocean ridge basalt (NMORB) values.  Figures 2e 
and 2f show the PTI compared to Holocene caldera-
forming tephras of Bean (1999) and mainly Holo-
cene flank vent lavas of Roach (1997). 

Figure 2.  Primitive mantle-normalized spider diagrams showing samples in the present study compared to NMORB (Sun and 
McDonough, 1989), and DSDP 183 (Plank and Langmuir, 1998).  Primitive mantle values are those of Sun and McDonough (1989).  
The homogeneity of the PTI is apparent in (a) whereas (b-d) show the greater variability of the subsequent lavas.  Comparison of 
the PTI to (e) the mainly Holocene flank vent lavas of Roach (1997) and (f) Holocene caldera forming tephras of Bean (1999) shows 
the Pleistocene ignimbrite is more fractionated relative to the Holocene lavas and slightly less fractionated relative to the Holocene 
tephras, especially the two caldera forming events.  
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Figures 3 and 4 show the behavior of Th/La, Ba/La, 
Sm/La and 207Pb/204Pb.  Both Th/La and Ba/La are 
positively correlated to 207Pb/204Pb, (Fig. 3a and 3b).  
In both instances the present samples plot between 
the MORB values and the DSDP 183 values.  Fur-
thermore, samples from this study plot between 
MORB and DSDP 183 values on a Th/La vs. Sm/La 
plot (Fig. 4).  

Olivine δ18O values range from 4.32-5.48, and 
plagioclase δ18O values range from 4.67-6.25 (Fig. 
5a).  Most samples plot below the arc mantle source 
value, and δ18O values increase with stratigraphy.  
Δ18O OL-PLAG values plot above the magmatic equi-
librium lines indicating disequilibrium between the 
minerals and the melt (Fig. 5b). 

DISCUSSION	

The trace element patterns of these Pleistocene 
volcanics are typical of island arc settings (Fig. 
2).  The relative abundance of large ion lithophile 
elements (LILE) compared to high field strength 
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Figure 3.  Ba/La, Th/La, and 207Pb/204Pb values for samples in the 
present study.  Ba/La (aqueous phase proxy) and Th/La (sedi-
ment melt proxy) display positive correlation with 207Pb/204Pb, 
and samples plot between NMORB (Sun and McDonough, 1989; 
Kelemen et al., 2003) and DSDP 183 (Plank and Langmuir, 1998; 
Kelemen et al., 2003). Error is smaller than the symbol size.
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Figure 4.  Th/La versus Sm/La plotted with Aleutian MORB 
(value taken from Plank, 2005) and DSDP values.  The samples 
show an obvious mixing line between these end members.  Er-
ror is smaller than the symbol size.  

Figure 5.  (A) δ18O of individual plagioclase and olivine crys-
tals plotted with arc mantle source value of Bindeman et al. 
(2004). (B) Δ18OOL-PLAG values plotted with lines of equilibrium at 
magmatic temperature 1300° C.  Note the disequilibrium of all 
samples except SEA.  Error is smaller than the symbol size.
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elements (HFSE) shows the influence of fluids in 
melt generation, as LILE are more fluid-mobile than 
HFSE.  The similar values of HFSE of NMORB and 
my samples are best explained by a similar depleted 
mantle source.  The only exception, flow BCC, has 
several HFSE values, Nb, Ta, Zr, Dy, Y, Yb, and Lu, 
lower than MORB, suggesting an even more deplet-
ed mantle source.  That BCC in general has lower 
abundances than other samples implies its produc-
tion by a higher degree of partial melting.  
 
Figure 2e and 2f show that the PTI is enriched rela-
tive to the Roach (1997) Holocene flank vents, and 
only slightly depleted relative to the Bean (1999) 
Holocene caldera forming events.  Because these 
trace element values track with SiO2 abundance, 
the spider plot implies that the PTI reached a lower 
degree of fractionation of a similar parent magma 
compared to the Holocene caldera-forming erup-
tions prior to the catastrophic eruption of the PTI.  
That the samples in the present study are more akin 
to the samples of Bean (1997) than to Roach (1997) 
indicates that the PTI likely erupted from the main 
Makushin plumbing system rather than a satellite 
vent.  
 
Kelemen et al. (2003) and Singer et al. (2007) dis-
cuss the positive correlation within the Aleutians 
of 207Pb/204Pb with sediment flux as well as Th/La 
and Ba/La.  207Pb/204Pb values increases to the east 
as does the calculated sediment flux (Kelemen et al., 
2003; Singer et al., 2007).  Th is high in marine sedi-
ments, low in the mantle, and relatively insoluble 
in fluids compared to Ba.  Therefore, Th is used as a 
proxy for sediment melt, and Ba is used as a proxy 
for a fluid phase added to mantle peridotite melts.  
These flows show a wider range of Th/La than Ba/La, 
but the Ba/La values are closer overall to the DSDP 
183 value (Fig. 3). This might suggest a consistent 
fluid release mechanism and a variable amount 
of sediment melting within the subduction zone.  
Figure 4, after Plank (2005), shows variable degrees 
of mixing between Pacific sediments and Aleutian 
MORB and helps explain the variation of the sample 
suite.  BCC, NWD, and BCF3V are influenced most 
by subducted sediment, while EAR and DB9M8 are 
least sediment-influenced (Fig. 4).    

 
The oxygen isotopes recorded in olivine and plagio-
clase crystals show a gradual increase of δ18O values 
going up stratigraphy (Fig. 3a).  BCF-1S-1, BCB-2S, 
and BCB-3S (scoria from the first 3 layers of the 
ignimbrite, respectively) show the lowest olivine 
δ18O values, while SEA and SEB show the highest 
olivine δ18O values.  Low δ18O phenocrysts can only 
be produced through magma that has somehow 
incorporated surface water, most likely through as-
similation of hydrothermally altered crustal rocks 
(Bindeman et al., 2001).  Δ18OOL-PLAG values shown in 
Figure 5b show that plagioclase and olivine crystals 
in BCB-2S, BCF-1S-1, BCC, SEB, and SEA were not 
in equilibrium with the magma in which they grew.  
Because distribution coefficients dictate that plagio-
clase should have higher δ18O than olivine in a given 
magma, it is notable that SEB contains a plagioclase 
δ18O value lower than its olivine δ18O value.  Figure 5 
provides evidence for assimilation of hydrothermally 
altered crustal rocks, disequilibrium magma cham-
bers, and possible magma mixing in sample SEB.  
This disequilibrium due to magma mixing is further 
supported by the prevalent sieve and zoning textures 
throughout the post-ignimbrite flows in addition to 
the magma mingling suggested by mottled scoria 
within the ignimbrite.

CONCLUSIONS

The volcanic rocks of Red Cinder Peak are derived 
from the main Makushin plumbing system rather 
than composing a satellite vent, and therefore the 
term Red Cinder Dome should not be used.  Al-
though most flows show similar trace element pat-
terns (Fig. 2), much geochemical variability exists, 
especially regarding BCC.  BCC seems to be more 
extensively melted from a more depleted source, but 
it also shows high Th/La ratios, indicating sediment 
melt.  Most samples show some degree of sediment 
influence, but whether this is in the form of a sedi-
ment melt or aqueous fluids is to be determined.  
Given the similarities in spider diagrams, the cause 
of the PTI cannot be related to fundamental factors 
controlling such patterns, such as the mantle source 
or degree of partial melting.  More likely, the PTI 
was caused by factors present in the petrography and 
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δ18O values, specifically crustal assimilation of low-
δ18O rocks, disequilibrium between minerals and 
melt, and magma mixing. 
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