KECK GEOLOGY CONSORTIUM

PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL KECK RESEARCH SYMPOSIUM IN GEOLOGY

April 2011
Union College, Schenectady, NY

Dr. Robert J. Varga, Editor
Director, Keck Geology Consortium
Pomona College

Dr. Holli Frey
Symposium Convenor
Union College

Carol Morgan
Keck Geology Consortium Administrative Assistant

Diane Kadyk
Symposium Proceedings Layout & Design
Department of Earth & Environment
Franklin & Marshall College

Keck Geology Consortium
Geology Department, Pomona College
185 E. 6th St., Claremont, CA 91711
(909) 607-0651, keckgeology@pomona.edu, keckgeology.org

ISSN# 1528-7491

The Consortium Colleges The National Science Foundation ExxonMobil Corporation
FORMATION OF BASEMENT-INVOLVED FORELAND ARCHES: INTEGRATED STRUCTURAL AND SEISMOLOGICAL RESEARCH IN THE BIGHORN MOUNTAINS, WYOMING
Faculty: CHRISTINE SIDDOWAY, MEGAN ANDERSON, Colorado College, ERIC ERSLEV, University of Wyoming
Students: MOLLY CHAMBERLIN, Texas A&M University, ELIZABETH DALLEY, Oberlin College, JOHN SPENCE HORNBUCKLE III, Washington and Lee University, BRYAN MCADEE, Lafayette College, DAVID OAKLEY, Williams College, DREW C. THAYER, Colorado College, CHAD TREXLER, Whitman College, TRIANA N. UFRET, University of Puerto Rico, BRENNAN YOUNG, Utah State University.

EXPLORING THE PROTEROZOIC BIG SKY OROGENY IN SOUTHWEST MONTANA
Faculty: TEKLA A. HARMS, JOHN T. CHENEY, Amherst College, JOHN BRADY, Smith College
Students: JESSE DAVENPORT, College of Wooster, KRISTINA DOYLE, Smith College, B. PARKER HAYNES, University of North Carolina - Chapel Hill, DANIELLE LERNER, Mount Holyoke College, CALEB O. LUCY, Williams College, ALIANORA WALKER, Smith College.

INTERDISCIPLINARY STUDIES IN THE CRITICAL ZONE, BOULDER CREEK CATCHMENT, FRONT RANGE, COLORADO
Faculty: DAVID P. DETHIER, Williams College, WILL OUMET, University of Connecticut
Students: ERIN CAMP, Amherst College, EVAN N. DETHIER, Williams College, HAYLEY CORSON-RIKERT, Wesleyan University, KEITH M. KANTACK, Williams College, ELLEN M. MALEY, Smith College, JAMES A. MCCARTHY, Williams College, COREY SHIRCLIFF, Beloit College, KATHLEEN WARRELL, Georgia Tech University, CIANNA E. WYSHNSZKY, Amherst College.

SEDIMENT DYNAMICS & ENVIRONMENTS IN THE LOWER CONNECTICUT RIVER
Faculty: SUZANNE O’CONNELL, Wesleyan University
Students: LYNN M. GEIGER, Wellesley College, KARA JACOBACCI, University of Massachusetts (Amherst), GABRIEL ROMERO, Pomona College.

GEOMORPHIC AND PALEOENVIRONMENTAL CHANGE IN GLACIER NATIONAL PARK, MONTANA, U.S.A.
Faculty: KELLY MACGREGOR, Macalester College, CATHERINE RIIHIMAKI, Drew University, AMY MYRBO, LacCore Lab, University of Minnesota, KRISTINA BRADY, LacCore Lab, University of Minnesota
Students: HANNAH BOURNE, Wesleyan University, JONATHAN GRIFFITH, Union College, JACQUELINE KUTVIRT, Macalester College, EMMA LOCATELLI, Macalester College, SARAH MATTESON, Bryn Mawr College, PERRY ODDO, Franklin and Marshall College, CLARK BRUNSON SIMCOE, Washington and Lee University.

GEOLOGIC, GEOMORPHIC, AND ENVIRONMENTAL CHANGE AT THE NORTHERN TERMINATION OF THE LAKE HÖVSGÖL RIFT, MONGOLIA
Faculty: KARL W. WEGMANN, North Carolina State University, TSALMAN AMGAA, Mongolian University of Science and Technology, KURT L. FRANKEL, Georgia Institute of Technology, ANDREW P. deWET, Franklin & Marshall College, AMGALAN BAYASAGALN, Mongolian University of Science and Technology.
Students: BRIANA BERKOWITZ, Beloit College, DAENA CHARLES, Union College, MELLISSA CROSS, Colgate University, JOHN MICHAELS, North Carolina State University, ERDENEBAYAR TSAGAANNARAN, Mongolian University of Science and Technology, BATTGOTHO DAMDINSUREN, Mongolian University of Science and Technology, DANIEL ROTHBERG, Colorado College, ESUGEI GANBOLD, ARANZAL ERDENE, Mongolian University of Science and Technology, AFSHAN SHAIKH, Georgia Institute of Technology, KRISTIN TADDEI, Franklin and Marshall College, GABRIELLE VANCE, Whitman College, ANDREW ZUZA, Cornell University.

LATE PLEISTOCENE EDIFICE FAILURE AND SECTOR COLLAPSE OF VOLCÁN BARÚ, PANAMA
Faculty: THOMAS GARDNER, Trinity University, KRISTIN MORELL, Penn State University
Students: SHANNON BRADY, Union College, LOGAN SCHUMACHER, Pomona College, HANNAH ZELLNER, Trinity University.

KECK SIERRA: MAGMA-WALLROCK INTERACTIONS IN THE SEQUOIA REGION
Faculty: JADE STAR LACKEY, Pomona College, STACI L. LOEWY, California State University-Bakersfield
Students: MARY BADAME, Oberlin College, MEGAN D’ERRICO, Trinity University, STANLEY HENSLEY, California State University, Bakersfield, JULIA HOLLAND, Trinity University, JESSLYN STARNES, Denison University, JULIANNE M. WALLAN, Colgate University.

EOCENE TECTONIC EVOLUTION OF THE TETONS-ABSAROKA RANGES, WYOMING
Faculty: JOHN CRADDOCK, Macalester College, DAVE MALONE, Illinois State University
Students: JESSE GEARY, Macalester College, KATHERINE KRAVITZ, Smith College, RAY MCGAUGHEY, Carleton College.

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1005122
ExxonMobil Corporation
Keck Geology Consortium: Projects 2010-2011
Short Contributions—Hövsgöl Rift, Mongolia

GEOLOGIC, GEOMORPHIC, AND ENVIRONMENTAL CHANGE AT THE NORTHERN TERMINATION OF THE LAKE HÖVSGÖL RIFT, MONGOLIA
Project Faculty: KARL W. WEGMANN: North Carolina State University, TSALMAN AMGAA: Mongolian University of Science and Technology, KURT L. FRANKEL: Georgia Institute of Technology, ANDREW P. deWET: Franklin & Marshall College, AMGALAN BAYASAGALN: Mongolian University of Science and Technology

MAPPING AND RELATIVE AGE DATING OF MORAINES IN THE HOROO GOL VALLEY, HÖVSGÖL RIFT, MONGOLIA
BRIANA BERKOWITZ, Beloit College
Research Advisor: Susan Swanson

PALEOLIMNOLOGY AND PALEOCLIMATE ENVIRONMENT REVEALED THROUGH HOLOCENE LAKE SHORE SEDIMENTS FROM HÖVSGÖL, MONGOLIA
DAENA CHARLES, Union College
Research Advisor: Donald Rodbell

A MULTI-PROXY STUDY OF HOLOCENE PALEOCLIMATE AND DEPOSITIONAL ENVIRONMENT, HÖVSGÖL, MONGOLIA
MELLISSA CROSS, Colgate University
Research Advisor: Bruce Selleck

CORRELATION OF TREE RING ANALYSIS AND CLIMATOLOGICAL RECORDS IN THE LAKE HÖVSGÖL REGION OF MONGOLIA
JOHN MICHAELS, North Carolina State University
ERDENEBAYAR TSAGAANNARAN, Mongolian University of Science and Technology
BATTDEGTOH DAMDINSUREN, Mongolian University of Science and Technology
Research Advisor: Karl Wegmann

LATE PLEISTOCENE GLACIATION AND TECTONICS AT LAKE HÖVSGÖL
DANIEL ROTHBERG, Colorado College
Mongolian Participants: Esugei Ganbold, Aranzal Erdene
Research Advisor: Eric Leonard

TIMING AND EXTENT OF LATE QUATERNARY GLACIATIONS NEAR LAKE HÖVSGÖL, MONGOLIA: IMPLICATIONS FOR CLIMATE CHANGE IN CENTRAL ASIA
AFSHAN SHAIKH, Georgia Institute of Technology
Research Advisor: Kurt L. Frankel

THE PALEOSEDIMENTARY ENVIRONMENT AND PALEOCLIMATIC CONDITIONS REVEALED BY STRATIGRAPHY IN HOLOCENE BOG AND TERRACE SEDIMENTS, NORTHWEST OF LAKE HÖVSGÖL, MONGOLIA
KRISTIN TADDEI, Franklin and Marshall College
Research Advisor: Dr. Andy deWet

PLEISTOCENE GLACIATION OF THE EASTERN SAYAN RANGE, NORTHERN MONGOLIA
GABRIELLE VANCE, Whitman College
ESUGEI GANBOLD, Mongolia University of Science and Technology
Research Advisors: Bob Carson and Nick Bader
INTRODUCTION

The Lake Hövsgöl region receives most of its annual precipitation during the mild summer months of July and August, while winter is harsh and typically very cold and dry. Climatic data sets from 3 meteorological monitoring stations (MMS) near Lake Hövsgöl reveal a 1°C increase in mean annual temperature over the past 20 years. The findings of Batima et al. (2005), with similar data, agree that the mean air temperature has increased by 1.66°C for the last 70 years, with distinct warming from the beginning of the 1970s increasing toward the end of the 1980s and 1990s. This indicates that both the summers and winters of Lake Hövsgöl are warming. Do the nomadic and semi-nomadic herders of Lake Hövsgöl (or for that matter all Mongolians) have reason to be concerned about a 1°C increase in temperature over the past 20 years? What is the impact of this temperature change on the Mongolian ecosystem? Changes in weather patterns may disrupt the growth of grasses which are key to the survival of foraging livestock upon which the majority of the Mongolian populous depends. Nearly 50 percent of Mongolia’s population is reliant on animal husbandry with an additional 35% of the population dependent upon agricultural gross production, which accounts for 30% of Mongolia’s export. Climatic changes may adversely impact pasture availability, threatening forage yield, endangering livestock productivity, and ultimately adversely impacting the food production capacity of local and national food producers.

The goal of this project is to characterize the variability of precipitation and temperature change through the construction of native tree ring chronologies and ring-width indices spanning several hundred years for the northern Lake Hövsgöl region and perform stable isotopic analysis of extracted alpha-cellulose in an effort to validate the instrumented climatic observations over longer time periods. Analysis of the ratios of stable isotopes (O, H) in cellulose can be used as “paleothermometers” to help reconstruct a climatologic record (Wilson and Grinsted, 1977). For this project, analysis was performed on a single wood component, cellulose, in order to minimize the variability of the ratio of wood constituents like lignin-to-cellulose as noted in (Wilson and Grinsted, 1977).

Figure 1. Study areas and meteorological monitoring stations (MMS) near Lake Hövsgöl
METHODS AND MATERIALS

This study was conducted in two phases, tree ring analysis to construct chronologies and ring-width indices and the stable-isotope analysis of the core samples.

Tree Ring Analysis

During the months of July and August 2010, a total of thirty-one tree cores were taken from twenty-nine L. Siberica using a 5 mm increment borer at breast height. The tree cores were taken parallel to the slope contour thereby avoiding reaction wood. Two cores were taken from selected trees in order to obtain a full diameter core section. The cores were stored in plastic straws to avoid damage in transit and storage prior to preparation.

Cores were prepared using Speer’s methodology. The cores were removed from the straws and placed in wooden sample holders; some samples showed evidence of mold. The cores were glued into the concave slot of the sample holders using wood glue and allowed to dry for at least 24 hours. The protruding upper half of the core was then removed down to the level of the sample holder by both belt and hand sanding with progressively finer grit sandpaper until a smooth surface was obtained. The orientation (bark-ring) of the sample was denoted on the sample holder for reference.

The prepared samples were then visually analyzed under a binocular microscope at 30x magnification and the width of individual rings measured and recorded with a Velamax Rapid Advance Unislide linear encoder that interfaces between the microscope and a PC using the ring counting procedure outlined by Speer. This process starts by assigning the year of the core acquisition to the bark end of the sample and then counts rings backwards in time to the sample pith. Total ring widths (including early and late wood) were measured to within 0.01 mm using the MeasureJ2X software package interfaced to the Velamax encoder. The ring width was exported from MeasureJ2X into a text file per core sample. The text files were manually edited to correct data format problems. These files were then imported into the

STUDY SITES

The Hövsgöl basin lies at the southern limit of the continuous Siberian boreal (taiga) forest. At the latitude of northern Lake Hövsgöl, forest stands are naturally composed almost entirely of Siberian larch (Larix siberica). The tree core samples for this study were gathered from several sites that lie along the northern shores of Lake Hövsgöl in the Horoo Gol valley (51.570° N; 100.462° E). Siberian larch chosen for this study are growing on south facing slopes, widely separated from other trees in the stand, and have large diameters (> 2 m) and heights (>18 m). Southern slopes were chosen because they are moisture-limited, making the stable-isotope analysis more feasible. Additionally, the selected trees were screened to avoid those with signs of burn scars, insect infestation or outward signs of heart-rot (to which L. Siberica is prone) and those with obvious anthropogenic influence. The slope aspect of the selected trees ranged from 0 to 31° (mean = 8°) and are covered with thin mantles and solifluction debris composed of granitic and balsatic rocks. The position of the tree line and the diversity and distribution of species in northern Mongolia are climatically controlled by humidity (total effective moisture) and temperature gradients (Jacoby et al., 2003).

Tree	Longitude	Latitude	Elevation	Circumference	Age	Species	Slope
101	51.570° N	100.462° E	1762	23.3	28	None	L. Siberica
102	51.570° N	100.462° E	1807	23.3	28	None	L. Siberica
103	51.570° N	100.462° E	1727	2.7	23	None	L. Siberica
104	51.570° N	100.462° E	1699	2.3	25	None	L. Siberica
105	51.570° N	100.462° E	1938	1.4	28	None	L. Siberica
106	51.570° N	100.462° E	2001	1.8	28	None	L. Siberica
107	51.570° N	100.462° E	1999	2.5	21	None	L. Siberica
108	51.570° N	100.462° E	1997	2.1	21	None	L. Siberica
109	51.570° N	100.462° E	1982	1.9	20	None	L. Siberica
110	51.570° N	100.462° E	1842	1.9	15	None	L. Siberica
111	51.570° N	100.462° E	1822	1.5	18	None	L. Siberica
112	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
113	51.570° N	100.462° E	1818	1.3	20	None	L. Siberica
114	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
115	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
116	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
117	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
118	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
119	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
120	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
121	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
122	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
123	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
124	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
125	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
126	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
127	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
128	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
129	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica
130	51.570° N	100.462° E	1816	1.3	20	None	L. Siberica

Table 1. Trees cored by location, elevation, circumference, slope, aspect, species, height and age.
TSAPWin software package (Rinntech GmbH, 2011) for cross-dating of time series. This step is critical to eliminate false rings, allow for insertion of missing rings and determine correlation between sites.

Stable Isotope Analysis of Alpha Cellulose

Because of reaction tissues and growth disturbances, most of the trees sampled were not dateable by dendrochronology. These tissues and disturbances disrupt the expected environmental signal of wide and narrow rings that enable cross-dating. Of the dated trees, three trees were selected for the hydrogen and oxygen isotopic analysis, however due to time limitations, only one tree was used. Selection criteria was based on three criteria used by (Loader et al., 2007): wood quality based on the absence of reaction tissue or rot, chronology (no partial/false rings) and age (to avoid potential isotopic ‘juvenile’ effects, samples chosen were greater than 150 years old). Alpha-cellulose was extracted and purified from the wood samples using a slightly modified Brendel method (; Fig. 3; Brendel et al., 2000) and placed in a desiccator filled with anhydrous silica gel prior to isotopic analysis. Oxygen and Hydrogen isotopes from the extracted alpha-cellulose were measured on an isotope ratio mass spectrometry (IRMS) in the North Carolina State University Stable Isotope Laboratory. At the time of writing, these analyses were ongoing.

RESULTS AND DISCUSSION

Although the results of the isotope analysis are not yet complete, the project intends to perform correlation analysis between dendroclimatic and stable isotope $\delta^{18}O$ data with the data sets obtained from

Table 1

<table>
<thead>
<tr>
<th>Step 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Take 10-100 mg milled sample</td>
</tr>
<tr>
<td>• Add 2 mL 80% v/v acetic acid</td>
</tr>
<tr>
<td>• Add 2 mL 69% v/v nitric acid</td>
</tr>
<tr>
<td>• Seal and vortex</td>
</tr>
<tr>
<td>• Boil gently at 120°C for 20 minutes</td>
</tr>
</tbody>
</table>

Step 2

- Allow to cool
- Add 2.5 mL of 99% v/v ethanol

Step 3

- Seal and vortex
- Centrifuge for 5 minutes at 2000 rpm
- Decant supernatant

Step 4

- Add 2 x 2.5 mL of 99% v/v ethanol
- Repeat Step 3

Step 5

- Add 2 x 2.5 mL deionized water
- Repeat Step 3

Step 6

- Add 2 x 2.5 mL of 99% v/v ethanol
- Repeat Step 3

Step 7

- Add 2 x 2.5 mL acetone
- Repeat Step 3

Step 8

- Add .4 mL acetone
- Add 6 mL acetone
- Transfer sample to 1.5 mL microfuge tube
- Vacuum dry

3 meteorological monitoring stations (MMS) around Lake Hövsgöl. Climatic data sets were obtained from Hotgol at the south end of lake, Hanh at the northern end of lake, and Renchinkhumb to the west in the Darhad depression. The mean annual, summer and winter temperature was plotted. A 0.05°C per year increase in temperature for the 3 stations equaling a 1°C increase in the past 20 years is observed as shown in Figure 5. Batima et al. (2005), using shorter temperature records from these three stations came to
similar findings that the mean annual air temperature has increased by 1.66 °C for the last 70 years, with distinct warming from the beginning of the 1970s increasing toward the end of the 1980s and 1990s. The warming has been most pronounced and evident by a mean winter (October – March) temperature increase of 3.6 °C. Annual precipitation has increased by 1 to 3.5 mm/yr as recorded by the three meteorological stations, as might be expected for a warming atmosphere.

CONCLUSION
Further discussion of the results and the conclusions based upon them are pending completion of the ongoing stable isotope analysis of the extracted alpha-cellulose. However, from the available recorded climatic data observations, it is evident that the mean annual temperature and the annual precipitation are both increasing. Because of the agrarian-basis of much of the Mongolian economy, changes to the climate, which potentially affect the growth of both fodder and forage are likely to have a bigger impact than they would on a more industrial-based economy. It might seem counter-intuitive that an increase in precipitation and temperature would have a negative impact on the continental climate of Mongolia, but historic flooding in 2009 which devastated even populated areas like Ulaanbaatar illustrates that such changes often result in negative outcomes.

ACKNOWLEDGEMENTS
I would like to thank RINNTECH for making their TSAPWin software available to me at a reduced cost.
I would also like to thank Battogtob Damdinsuren, “Togii”, for making the Mongolian field trip much easier, more productive and culturally enlightening by lowering the language barrier between myself and the Mongolian team members and providing translation assistance. I’d also like to acknowledge Dr. Karl Wegmann’s contributions to this project, not the least of which was his patience and invaluable guidance in the laboratory work.

REFERENCES

