2007-2008 PROJECTS:

Tectonic and Climatic Forcing of the Swiss Alps
John Garver (Union College), Mark Brandon (Yale University), Alison Anders (University of Illinois),
Jeff Rahl (Washington and Lee University), Devin McPhillips (Yale University)
Students: William Barnhart, Kat Compton, Rosalba Queirolo, Lindsay Rathnow,
Scott Reynhout, Libby Ritz, Jessica Stanley, Michael Werner, Elizabeth Wong

Geologic Controls on Viticulture in the Walla Walla Valley, Washington
Kevin Pogue (Whitman College) and Chris Oze (Bryn Mawr College)
Students: Ruth Indrick, Karl Lang, Season Martin, Anna Mazzariello, John Nowinski, Anna Weber

The Árnes central volcano, Northwestern Iceland
Brennan Jordan (University of South Dakota), Bob Wiebe (Franklin & Marshall College), Paul Olin (Washington State U.)
Students: Michael Bernstein, Elizabeth Drewes, Kamilla Fellah, Daniel Hadley, Caitlyn Perlman, Lynne Stewart

Origin of big garnets in amphibolites during high-grade metamorphism, Adirondacks, NY
Kurt Hollocher (Union College)
Students: Denny Alden, Erica Emerson, Kathryn Stack

Carbonate Depositional Systems of St. Croix, US Virgin Islands
Dennis Hubbard and Karla Parsons-Hubbard (Oberlin College), Karl Wirth (Macalester College)
Students: Monica Arienzo, Ashley Burkett, Alexander Burpee, Sarah Chamlee, Timmons Erickson
Andrew Estep, Dana Fisco, Matthew Klinman, Caitlin Tems, Selina Tirtajana

Sedimentary Environments and Paleoeology of Proterozoic and Cambrian “Avalonian” Strata in the United States
Mark McMenamin (Mount Holyoke College) and Jack Beuthin (U of Pittsburgh, Johnstown)
Students: Evan Anderson, Anna Lavarreda, Ken O’Donnell, Walter Persons, Jessica Williams

Development and Analysis of Millennial-Scale Tree Ring Records from Glacier Bay National Park and Preserve, Alaska (Glacier Bay)
Greg Wiles (The College of Wooster)
Students: Erica Erlanger, Alex Trutko, Adam Plourde

The Biogeochemistry and Environmental History of Bioluminescent Bays, Vieques, Puerto Rico
Tim Ku (Wesleyan University) Suzanne O’Connell (Wesleyan University), Anna Martini (Amherst College)
Students: Erin Algeo, Jennifer Bourdeau, Justin Clark, Margaret Selzer, Ulyanna Sorokopoud, Sarah Tracy

Funding provided by:
Keck Geology Consortium Member Institutions and NSF (NSF-REU: 0648782)
TECTONIC AND CLIMATIC FORCING OF THE SWISS ALPS: p1-5
 Project Director: JOHN I. GARVER: Union College
 Project Faculty: JEFFREY RAHL: Washington and Lee University; MARK T. BRANDON: Yale University
 ALISON ANDERS: University of Illinois at Urbana-Champaign
 Project Associate: DEVIN McPHILLIPS: Yale University

DEFORMATION CONDITIONS AND DEFORMATION MECHANISMS OF DUCTILE SHEAR ZONES OF THE MAGGIA NAPPE, SWITZERLAND: p6-11
 WILLIAM D. BARNHART: Washington and Lee University
 Research Advisor: Jeffrey Rahl

STRAIN ANALYSIS AND INTEGRATION: QUANTIFYING THE DEFORMATION OF THE LAGHETTI AREA, MAGGIA NAPPE, SWITZERLAND: p12-17
 KATHLEEN COMPTON: Whitman College
 Research Advisor: Jeffrey Rahl

ZIRCON FISSION-TRACK THERMOCHRONOLOGY OF THE LEPONTINE DOME, SWISS ALPS: p 18-22
 ROSALBA QUEIROLO: Union College
 Research Advisor: John Garver

QUANTIFICATION OF FLOOD MAGNITUDES AND EROSION RATES USING DENDROCHRONOLOGY: TICINO CANTON, SWITZERLAND: p23-28
 LINDSAY RATHNOW: University of Illinois
 Research Advisor: Alison Anders

EQUILIBRIUM-LINE ALTITUDE VARIANCE WITH PRECIPITATION IN THE SOUTH-CENTRAL ALPS: IMPLICATIONS FOR LONG-TERM EXHUMATION: p29-34
 SCOTT REYNHOUT: Beloit College
 Research Advisor: Alison Anders

CAN THE STREAM POWER LAW BE USED TO QUANTIFY DIFFERENTIAL LANDSCAPE EVOLUTION FROM BEDROCK INCISION IN THE CENTRAL ALPS, SWITZERLAND?: p35-39
 LIBBY RITZ: Carleton College
 Research Advisors: Mary Savina

USING (U-Th)/He THERMOCHRONOLOGY TO CONSTRAIN EXHUMATION IN THE SWISS-ITALIAN ALPS: p40-43
 JESSICA STANLEY: Massachusetts Institute of Technology
 Research Advisor: Samuel Bowring

QUANTIFYING RATES OF EROSION USING THE OCCURRENCE AND MAGNITUDE OF FLOOD EVENTS IN THE LEPONTINE DOME, SWITZERLAND: p44-48
 MIKE WERNER: Colgate University
 Research Advisors: Martin Wong

THE RELATIONSHIP BETWEEN CHANNEL MORPHOLOGY OF BEDROCK RIVERS AND EROSIONAL PROCESSES IN TICINO, SWITZERLAND: p49-54
 ELIZABETH WONG: Yale University
 Research Advisors: Mark Brandon and Alison Anders

Funding provided by: Keck Geology Consortium Member Institutions and NSF (NSF-REU: 0648782)
Keck Geology Consortium Franklin & Marshall College PO Box 3003, Lancaster Pa, 17603: Keckgeology.org
INTRODUCTION

(U-Th)/He thermochronology is a technique that can be used to determine the time that a mineral, and inferentially a rock, cooled through a specific closure temperature. Closure temperature (Dodson et al, 1973) of a mineral is the temperature at which retention of daughter products from radioactive decay begins. In this study the U/Th-He closure temperature is approximately 67°C (Farley, 2000) and for zircon is 183°C (Reiners et al., 2004), though there are many factors that can cause this to vary.

Exhumation rates can be calculated if the geothermal gradient from the sample area can be estimated, and the closure temperature correlated to a depth. For this study most samples were taken in vertical transects, covering as much elevation as possible, generally 1 to 3 km, over as small a lateral distance as possible. By minimizing the lateral distance, it can be assumed that the geothermal gradient is approximately the same for all samples, and therefore all samples crossed the closure isotherm at approximately the same depth. The age and elevation of each sample can be plotted, and the slope interpreted as the exhumation rate that is likely related to erosion rate.

In this project thermochronology data are used to study exhumation in the central and southern Swiss and Italian Alps. The European Alps are caused by the collision of the European Plate in the north with the Adriatic Plate (a sub-plate of Africa) in the south. The Adriatic Plate overrides the European Plate, which subducts beneath it. Samples were taken north and south of the Insubric Line, which is a deep basement fault that functions as the back thrust for the orogenic wedge of the Alps, and often is interpreted as the boundary between Europe and Adria. A geologic map with sample localities is shown in Figure 1.

The samples from north of the Insubric Line were taken from the Lucomagno, Simano, Leventina, and Maggia Nappes within the Pennine Nappes tectonic unit. The Pennine Nappes are the transported, distal part of the European margin, and sediment accumulation within two oceanic basins. The nappes from which the samples were taken are part of the Lepontine Gneiss Region, a region of amphibolite
facies metamorphism, considered to be part of the European basement.

The samples from south of the Insubric Line are taken from the Strona-Ceneri Zone of the Southern Alps. This is an amphibolite facies gneiss complex that represents the mid-crustal section of the Adriatic plate.

METHODS AND RESULTS

Thirteen bedrock samples were collected from Ticino and Northern Italy. Ten were taken from the Pennine Nappes, north of the Insubric Line, seven of which were in a vertical transect. Three were taken in a vertical transect from the Southern Alps, south of the Insubric Line. Sample localities can be seen in Figure 1.

All samples were crushed, and zircon andapatite grains were separated and selected for dating using (U-Th)/He method. Unfortunately not all rocks crushed yielded significant zircon, and most rocks did not yield enough inclusion-freeapatite to be dated. Two zircon grains from each sample, andapatite grains from a few samples were dated at the Helium Lab at University of Arizona.

The ages for the individual crystals are shown in Table 1. The ages ranged from 7 Ma north of the Insubric Line to 182 Ma south of the Insubric Line. The age-elevation relationship (AER) for the samples north of the Insubric Line is shown in Figure 2, and for those south in Figure 3. The majority of the

Table 1. Helium ages. The only reliable age from apatite was the first age from 07LM3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Elevation (m)</th>
<th>Zircon Age (Ma)</th>
<th>2σ (Ma)</th>
<th>Apatite Age (Ma)</th>
<th>2σ (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07BN1</td>
<td>511</td>
<td>8.11</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07BN4</td>
<td>2085</td>
<td>9.93</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07BN7</td>
<td>1828</td>
<td>11.88</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07BN8</td>
<td>1525</td>
<td>9.88</td>
<td>0.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07BN9</td>
<td>1124</td>
<td>10.68</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07BN10</td>
<td>779</td>
<td>11.27</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07TC1</td>
<td>405</td>
<td>12.93</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07TC3</td>
<td>321</td>
<td>12.77</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07TC4</td>
<td>297</td>
<td>13.43</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. AER from north of the Insubric Line. Error bars are the average inter-grain variance, 16%.

Figure 3. AER for samples south of the Insubric Line. Error bars are the average inter-grain variance, 16%.

The ages for the individual crystals are shown in Table 1. The ages ranged from 7 Ma north of the Insubric Line to 182 Ma south of the Insubric Line. The age-elevation relationship (AER) for the samples north of the Insubric Line is shown in Figure 2, and for those south in Figure 3. The majority of the
apatites dated did not yield enough helium to give good results

DISCUSSION

The ages from samples north of the Insubric Line are much younger than the samples south of the Insubric Line. Zircon ages from the north range from 7 to 12 Ma, whereas ages from the south range from 100 to 180 Ma. This pattern indicates differential exhumation across the fault, with much faster rates to the north. When the points from the vertical transects were fit to a regression line, the slope indicates an exhumation rate of about 900 m/Myr in the north, with about 20 m/Myr in the south. This result shows that there is a much faster exhumation in the north, likely indicating more rapid erosion than south of the Insubric Line.

The apatite results are less conclusive because so few samples yielded sufficient quality apatite for analysis, and the best quality apatite often did not have enough helium for precise measurement. A single robust apatite age of 23 Ma comes from south of the Insubric Line. One possible explanation for the lack of helium in many of the samples from north of the Insubric line is that the cooling ages are very young (less than 5 to 10 Ma), which would indicate that the fast exhumation rates have continued into recent times, still with significantly older ages South of the Insubric Line.

Three (U-Th)/He data points from the vertical transect south of the Insubric line results in a distinct slope and a calculated, relatively low exhumation rate of 16m/Myr. (Fig 3).

The helium ages from samples north of the Insubric Line show a clear exhumation trend related to orogenic activity. The points in blue on Figure 2 are the samples taken in a vertical transect, whereas the three points in green are those taken down valley toward the Insubric Line for a constant elevation perspective. As expected, the transect shows older ages at high elevations and younger ages at low elevations. Two samples in the middle of the transect are clear outliers. Sample 07BN8 is exceptionally young. This rock was a calc-arenite belonging to the Bündershifer unit to the north, whereas all other samples were gneisses belonging to the basement nappes. The abrasion of the zircon crystals by sedimentary transport showed great variability, some crystals were significantly more rounded than others, and the ages on the two grains dated were 7 Ma and 177 Ma.

The age from 07BN9 is older than expected. There was nothing particularly remarkable about this rock in the field, and if the age from the older aliquot is ignored, the 12.93 Ma age, then the other age, 10.08 Ma, lies on the AER as expected, so it is possible that the age from the second crystal is not correct. The other possible explanation for both of the unexpected ages on 07BN8 and 07BN9 is that there is some unrecognized structure in the field, which is unlikely given the magnitude required.

Samples down valley towards the Insubric Line (in green on Fig. 2) get older as they approach the fault. One can imagine a plane connecting all points of equal age; this surface is termed an isochrone. If the dip between 07BN4 and 07TC3, which have almost the same age, is calculated, the isochrone dips south toward the Insubric Line at an angle of about 5 degrees. This angle is small enough that it the deflection could be caused by the isotherms being warped by topography, or it is possible that the isochrones are being deflected by the Insubric Line.

REFERENCES

Berger, A., I. Mercolli, and M. Engi (2005), The central Lepintine Alps: Notes accompanying the tectonic and petrographic map sheet Sopra Ceneri (1:100’000), Schweizerische Mineralogische und Petrographische Mitteilungen, 85, 109-146.

Farley, K. A. (2000), Helium diffusion from apatite;

