TEC TORONIC EVOLUTION OF THE CHUGACH-PRINCE WILLIAM TERRANE, SOUTH- CENTRAL ALASKA
Faculty: JOHN GARVER, Union College, Cameron Davidson, Carleton College
Students: EMILY JOHNSON, Whitman College, BENJAMIN CARLSON, Union College, LUCY MINER, Macalester College, STEVEN ESPINOSA, University of Texas-El Paso, HANNAH HILBERT-WOLF, Carleton College, SARAH OLIVAS, University of Texas-El Paso.

ORIGINS OF SINUOUS AND BRAIDED CHANNELS ON ASCRAEUS MONS, MARS
Faculty: ANDREW DE WET, Franklin & Marshall College, JAKE BLEACHER, NASA-GSFC, BRENT GARRY, Smithsonian

TROPICAL HOLOCENE CLIMATIC INSIGHTS FROM RECORDS OF VARIABILITY IN ANDEAN PALEOGLACIERS
Faculty: DONALD RODBELL, Union College, NATHAN STANSELL, Byrd Polar Research Center
Students: CHRISTOPHER SEDLAK, Ohio State University, SASHA ROTHENBERG, Union College, EMMA CORONADO, St. Lawrence University, JESSICA TREANTON, Colorado College.

EOCENE TECTONIC EVOLUTION OF THE TETON-ABSAROKA RANGES, WYOMING
Faculty: JOHN CRADDOCK. Macalester College, DAVE MALONE. Illinois State University
Students: ANDREW KELLY, Amherst College, KATHRYN SCHROEDER, Illinois State University, MAREN MATHISEN, Augustana College, ALISON MACNAMEE, Colgate University, STUART KENDERES, Western Kentucky University, BEN KRASUSHAAR

INTERDISCIPLINARY STUDIES IN THE CRITICAL ZONE, BOULDER CREEK CATCHMENT, FRONT RANGE, COLORADO
Faculty: DAVID DETHIER, Williams College
Students: JAMES WINKLER, University of Connecticut, SARAH BEGANSKAS, Amherst College, ALEXANDRA HORNE, Mt. Holyoke College
DEPTH-RELATED PATTERNS OF BIOEROSION: ST. JOHN, U.S. VIRGIN ISLANDS
Faculty: DENNY HUBBARD and KARLA PARSONS-HUBBARD, Oberlin College

THE HRAFNJORDUR CENTRAL VOLCANO, NORTHWESTERN ICELAND
Faculty: BRENNAN JORDAN, University of South Dakota, MEAGEN POLLOCK, The College of Wooster
Students: KATHRYN KUMAMOTO, Williams College, EMILY CARBONE, Smith College, ERICA WINELAND-THOMSON, Colorado College, THAD STODDARD, University of South Dakota, NINA WHITNEY, Carleton College, KATHARINE, SCHLEICH, The College of Wooster.

SEDIMENT DYNAMICS OF THE LOWER CONNECTICUT RIVER
Faculty: SUZANNE O'CONNELL and PETER PATTON, Wesleyan University
Students: MICHAEL CUTTLER, Boston College, ELIZABETH GEORGE, Washington & Lee University, JONATHON SCHNEYER, University of Massachusetts-Amherst, TIRZAH ABBOTT, Beloit College, DANIELLE MARTIN, Wesleyan University, HANNAH BLATCHFORD, Beloit College.

ANATOMY OF A MID-CRUSTAL SUTURE: PETROLOGY OF THE CENTRAL METASEDIMENTARY BELT BOUNDARY THRUST ZONE, GRENVILLE PROVINCE, ONTARIO
Faculty: WILLIAM PECK, Colgate University, STEVE DUNN, Mount Holyoke College, MICHELLE MARKLEY, Mount Holyoke College
Students: KENJO AGUSTSSON, California Polytechnic State University, BO MONTanye, Colgate University, NAOMI BARSHI, Smith College, CALLIE SENDEK, Pomona College, CALVIN MAKO, University of Maine, Orono, ABIGAIL MONREAL, University of Texas-El Paso, EDWARD MARSHALL, Earlham College, NEVA FOWLER-GERACE, Oberlin College, JACQUELYNE NESBIT, Princeton University.

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1005122
ExxonMobil Corporation
Keck Geology Consortium: Projects 2011-2012
Short Contributions—Grenville Province, Ontario Project

PETROLOGY AND STRUCTURE OF THE CENTRAL METASEDIMENTARY BELT BOUNDARY THRUST ZONE ITS HANGING WALL, GRENVILLE PROVINCE, ONTARIO
Project Faculty: WILIAM H. PECK, Colgate University, STEVEN R. DUNN, Mount Holyoke College
MICHELLE J. MARKLEY, Mount Holyoke College

GEOCHEMISTRY AND GEOCHRONOLOGY OF CENTRAL METASEDIMENTARY BELT BOUNDARY THRUST ZONE THRUST SHEETS IN SOUTHERN ONTARIO, GRENVILLE PROVINCE
KENJO S. AGUSTSSON, California Polytechnic State University, San Luis Obispo
Research Advisor: Scott Johnston

CONFLICTING KINEMATICS OF THE SALERNO CREEK DEFORMATION ZONE, GRENVILLE PROVINCE, ONTARIO
NAOMI BARSHI, Smith College
Research Advisor: Jack Loveless

THERMOBAROMETRIC EVIDENCE FOR A COMMON CENTRAL METASEDIMENTARY BELT AFFINITY OF THE BANCROFT AND ELZEVIR TERRANES, ONTARIO, CANADA
NEVA FOWLER-GERACE, Oberlin College
Research Advisor: F. Zeb Page

HETEROGENEOUS DEFORMATION OF GABBROIC ROCKS
CALVIN MAKO, University of Maine
Research Advisor: Christopher Gerbi

PETROLOGY AND GEOCHEMISTRY OF THE ALLSAW ANORTHOSITE: A SCAPOLITIZED META-ANORTHOSITE IN GRENVILLE PROVINCE, ONTARIO
EDWARD W. MARSHALL, Earlham College
Research Advisor: Meg Streepey Smith

GARNET-BIOTITE GEOETHERMOBAROMETRY OF THE CENTRAL METASEDIMENTARY BELT BOUNDARY THRUST ZONE OF THE GRENVILLE PROVINCE, ONTARIO, CANADA
ABIGAIL MONREAL, University of Texas at El Paso
Research Advisor: Jasper G. Konter

CARBON ISOTOPE THERMOMETRY IN THE CENTRAL METASEDIMENTARY BELT BOUNDARY THRUST ZONE
GRENVILLE PROVINCE, ONTARIO
BO MONTANYE, Colgate University
Research Advisor: William H. Peck

CALCITE-GRAPHITE THERMOMETRY IN THE SOUTHWESTERNMOST CENTRAL METASEDIMENTARY BELT, GRENVILLE PROVINCE, SOUTHERN ONTARIO
JACQUELYNE NESBIT, Princeton University
Research Advisor: Blair Schoene
USING STRUCTURAL ANALYSES TO ASSESS POSSIBLE FORMATION MECHANISMS OF THE
CHEDDAR GNEISS DOME
CALIE SENDEK, Scripps College
Research Advisor: Linda Reinen

Keck Geology Consortium
Pomona College
185 E. 6th St., Claremont, CA 91711
Keckgeology.org
INTRODUCTION

The southern Grenville Province in Ontario (Fig. 1) exposes metasedimentary, metavolcanic, and meta-plutonic rocks of the 1.3–1.2 Ga Central Metasedimentary Belt (CMB) sitting on top of orthogneiss-dominated 1.7–1.4 Ga rocks of the Central Gneiss Belt (CGB, Easton 1992). The boundary between these tectonic belts is the Central Metasedimentary Belt boundary thrust zone (CMBbtz; Fig. 2 and 3): a region of annealed, heterogeneously deformed mylonitic tectonites and marble mélange tectonites surrounding dismembered metaplutonic thrust sheets (Hanmer, 1988; Hanmer and McEachern, 1992). The provenance of these thrust sheets and dismembered blocks (i.e. if they originate from the CGB, CMB, or elsewhere) is generally unclear.

Structurally above the CMBbtz are the Bancroft Terrane and the Harvey-Cardiff Domain (Fig. 2). The Bancroft Terrane may be a deformed extension of the CMB, which it resembles lithologically, or it may be a supracrustal package deposited on the margin of Laurentia, now the CGB (Carr et al., 2000). The position of the CMB during its formation is unclear. The Harvey Cardiff Domain of the CMB includes a lithologically distinctive suite of four granitic gneiss domes with strongly deformed mantles of amphibolite and marble. The CMBbtz, Bancroft Terrane, and Harvey-Cardiff Domain all share similar structural geometries: east-dipping lithologic boundaries associated with a strong foliation in the same orientation and a sporadic but consistently oriented stretching lineation that is down-dip and associated with a top-to-the-west sense of shear.

This project focuses on quantifying peak pressure and temperature conditions during thrusting of the CMB over the CGB. We also explore possible protoliths for metaplutonic rocks in the CMBbtz thrust sheets. Finally, we report preliminary results from analysis of foliation and kinematic evolution of a gneiss dome from the Harvey-Cardiff Domain and a newly identified shear zone at the boundary of the Bancroft Terrane and the Harvey-Cardiff Domain.

CONTROVERSIAL TECTONICS

Although the term “terrane” pervades the literature on this region, the nature and origin of these distinctive and strongly deformed suites of rock is controversial. The western CMB is dominated by greenschist- and
amphibolite facies metasedimentary and 1.29–1.24 Ga metavolcanic and volcanoclastic rocks that are intruded by suites of gabbroic, tonalitic, and granitic plutons (Easton, 1992). The volcanic rocks have arc geochemical signatures and are dominated by mafic tholeiitic suites, but include intermediate and felsic rocks, some with calc-alkaline signatures. Carr et al. (2000) term this region the Composite Arc Belt, and interpret this package of rocks to be a collage of volcanic arc environments, some of which were formed on oceanic crust away from Laurentia. This tectonic interpretation is controversial, as others have assigned these rocks to rifting and back-arc environments underlain by continental crust and developed on the Laurentian margin (e.g. Hanmer et al., 2000). The youngest cross-cutting plutonic rocks appear to constrain terrane amalgamation of the Composite Arc Belt to 1.24–1.22 Ga (Carr et al., 2000).

The timing of accretion of the Composite Arc Belt to the Central Gneiss Belt is also controversial, as there is evidence for two deformation events in the CMBbtz at ca. 1.19 and 1.08–1.06 Ga (McEachern and van Breemen, 1993). The 1.08–1.06 Ga event is interpreted to date the most pervasive deformation, and CGB rocks structurally below the CMBbtz only record the 1.08 Ga metamorphism, which is interpreted by Timmermann et al. (1997) as representing docking of the Composite Arc Belt. The tectonic significance of the 1.19 Ga event and new 1.12 Ga metamorphic ages (Peck and Kylander-Clark, unpub. data) from the CMBbtz is unknown. The work presented below informs but does not resolve some of these longstanding debates about regional tectonics.

STRUCTURAL GEOLOGY OF THE HANGING WALL OF THE CMBbtz

The top of the CMBbtz has historically not been well defined in the field. Carlson et al. (1990) propose that it is an extensional shear zone called the Bancroft shear zone (BSZ). The BSZ is controversial in this context because it clearly records late extension after peak Grenville orogenesis, and it does not offset any metamorphic isograds, implying it does not accommodate regionally significant displacement. More to the point, if the BSZ is the top of the CMBbtz, then the fundamental relationship between the CMBbtz and the adjacent Harvey-Cardiff domain is one of tectonic collapse. This interpretation is starkly at odds with the equally controversial terrane accretion model for the different suites of rock in the CMB. Recently, Easton and Carr (2009) proposed the newly-mapped Salerno Creek deformation zone (SCDZ) as
the boundary between the CMBbtz and the Harvey-Cardiff domain.

Two student projects focus on the structural geology of SCDZ. Naomi Barshi’s work shows that the steep lineation in the SCDZ is associated with both extensional (E side down) and contractional (E side up) sense of shear. Barshi documents both senses of shear using clast tiling and sigma and delta porphyroclasts, mostly in a meta-granite that crops out sporadically along the SCDZ. She suggests that the SCDZ may have accommodated both types of events (early terrane accretion or thrusting in the CMBbtz, followed by later extension associated with tectonic collapse). Barshi’s quest for dateable monazite associated with deformation fabrics in the SCDZ was tragically unsuccessful. Calvin Mako completed a more process-oriented project in the SCDZ. He looked at meter-scale strain localization and fabric development in a gabbro caught up and variably deformed in the SCDZ. His work shows that deformation (and the development of gneissic fabric) involved grain size reduction of both hornblende and plagioclase. Associated with this deformation are changes in amphibole composition and crystallographic preferred orientation, without similar changes in the feldspar.
A common problem with conventional geother-mobarometry is that results using different mineral assemblages or calibrations can be difficult to compare. Two student projects focused on using a carbon isotope thermometer in marbles as a way of assessing metamorphic temperatures in a series of transects across the Elzevir and Bancroft terranes. Jacquelyne Nesbit documented an east to west gradient of increasing metamorphic temperatures from \(\sim 600^\circ C\) south of the Anstruther dome to \(\sim 700^\circ C\) in the western Bancroft terrane, broadly agreeing with but refining published thermometry. Bo Montayne’s northwest/southeast transect from north of the Cheddar Dome to northwest of the Redstone thrust sheet yielded different results: no temperature gradient was detected and temperatures are consistently higher (averaging \(\sim 750^\circ C\)). Higher temperatures in Montayne’s northern transect may have been predicted by extrapolation of thermometry in the Harvey-Cardiff Domain and further east, but the magnitude of the difference between the northern and southern transects is surprising. Because these data were collected in two different laboratories, a direct lab-lab comparison of selected samples will be carried out.

METAMORPHIC PETROLOGY OF THE CMBBTZ

A major objective of student projects was to obtain constraints on the conditions of the metamorphism of the CMBBtz. Previous thermobarometry and phase equilibria studies had focused on the CGB footwall and the CMB hanging wall, inexplicably leaving the CMBBtz’s amphibolite-facies metamorphism poorly characterized (see Streepey et al., 1997 and references therein). Four students undertook projects to better understand the metamorphic history of the area. Two of those projects were petrologic studies of a variety of metamorphic rocks in the CMBBtz (+Bancroft) and Elzevir terrane. Neva Fowler-Gerace examined garnet-bearing schists and gneisses, mainly metabasites, from the Elzevir and Bancroft terranes. Garnet-biotite temperatures from these rocks range from between 620 and 780°C and cluster around 650–700°C. Assemblages that constrain pressure are more limited in these rocks, with most giving pressures in the range 6-8 kbar with a few in the 9-10 kbar range. Abigail Monreal focused on pelitic schists and gneisses from around the Dysart and Redstone thrust sheets in the westernmost CMBBtz. The petrology of these units is consistent with \(\sim 650–800^\circ C\) and a range of pressures up to 11 kbar, which will be further constrained using mineral composition data.

Fault-bounded orthogneiss blocks within the CMBbtz range in size from outcrop-sized to 10s of square kilometers and contain a variety of lithologies (Fig. 3; Hanmer, 1988; Hanmer and McEachern, 1992). Hanmer (1988) proposed that the tonalitic Redstone, Dysart, and Glamorgan sheets could have once been a coherent plutonic body that has been dismembered. This question has been debated in the literature, as has the tectonic significance of these rocks. Unpublished geochronology and reconnaissance geochemistry of the Redstone and Dysart thrust sheets (Lumbers et al.,
1990) has linked them to similar rocks in the Adirondacks and Vermont (Fig. 1). Kenjo Agustsson studied the geochemistry and geochronology of the Redstone and Dysart bodies. He found that both bodies have igneous ages of 1.33-1.30 Ga, and contain a similar suite of calc-alkaline tonalites and amphibolites with associated tholeiitic amphibolites having MORB-like rare earth element compositions. Agustsson suggests that these rocks formed in an Andean setting at the Laurentian margin, followed by a backarc rifting episode.

Also present in the suite of meta-igneous thrust sheets are enigmatic blocks made predominately of massif-type anorthosite. These bodies have received little petrologic attention, and have been broadly correlated as belonging to one or another of the larger thrust sheets. The Allsaw anorthosite body was the focus of Edward Marshall’s research. This body has undergone variable deformation and has been partially converted to scapolite, apparently by infiltration of CO₂-rich fluids from the surrounding marble units. Easton (1990) linked the Allsaw anorthosite with the adjacent Glamorgan thrust sheet, but new rare earth element data point to an affinity with other Grenville anorthosites, and not the Glamorgan complex. Marshall documents both channelized and pervasive infiltration of this body, producing scapolite ±zoisite assemblages consistent with metasomatism under upper amphibolite facies conditions.

ACKNOWLEDGEMENTS

This project was made possible by funding from the Keck Geology Consortium and logistical support from Colgate University and Mount Holyoke College. Jodi McNamara, David Linsley, Di Keller, and Sarah Lemon at Colgate are especially thanked for their support of this project in the office and in the laboratory. Also, Alianora Walker at Mount Holyoke and David Finkelstein at the University of Massachusetts assisted with some of the stable isotope work. Chris Gerbi, Scott Johnston, Jasper Konter, Jack Loveless, Zeb Page, Linda Reinen, Blair Schoene, and Meg Streepey-Smith are all thanked for advising these projects during the academic year. Andrew Kylander-Clark (UC-Santa Barbara) and Yang Chen (U Michigan) hosted and assisted members of this project during visits to analytical laboratories. Mike Easton and Nick Culshaw are also thanked for helping identify possible student projects and their generous advice throughout. J. Nesbit was partially supported by NSF-EAR 0635816.

REFERENCES

Hanmer, S, and McEachern, S, 1992, Kinematical and rheological evolution of a crustal scale ductile thrust zone, Central metasedimentary belt,

